An overview study on the TL and OSL dosimetry patent processes over time
DOI:
https://doi.org/10.15392/2319-0612.2023.2107Keywords:
dosimetry, thermoluminescence, optically stimulated luminescence, patent, intellectual propertyAbstract
Since its discovery, ionizing radiation has been used in many different applications. Materials and methods have been developed to measure and quantify radiation doses. Thermoluminescence (TL) and Optically Stimulated Luminescence (OSL) are two techniques used for radiation dosimetry. Both TL and OSL are primarily applied in several areas, such as dating of ancient materials, equipment quality control and individual monitoring. One of the parameters to measure the knowledge and development of a technology is the number of patents related to the field. In this work, we established a methodology for patent search on the World Intellectual Property Organization (WIPO) database aiming to review the development of TL and OSL dosimetry over time. We concluded that along with the OSL technique development, the TL technique should continue to be explored in radiation dosimetry.
Downloads
References
OKUNO, E.; YOSHIMURA, E. Física das Radiações. Sao Paulo: Oficina de Textos, 2010.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UN-SCEAR 2020/2021 Report Volume III, Vienna: UNSCEAR, 2021. Available at: https://www.unscear.org/unscear/en/publications/2020_2021_3.html
WERNLI, C. A Short History And Critical Review Of Individual Monitoring. Radiat Prot Do-simetry 2016;170:4–7. https://doi.org/10.1093/RPD/NCW025. DOI: https://doi.org/10.1093/rpd/ncw025
NIU, S. Radiation protection of workers SafeWork Programme on Safety and Health at Work and the Environment. SafeWork Inf Note Ser 2011.
ICRP. ICRP Publication 103: The 2007 Recommendations of the International Commission on Radiological Protection. Ann ICRP 2007;37:1–332.
IZEWSKA, J.; ANDREO, P.; VATNITSKY, S.; SHORTT, K.R. The IAEA/WHO TLD postal dose quality audits for radiotherapy: a perspective of dosimetry practices at hospitals in developing countries. Radiother Oncol 2003;69:91–7. DOI: https://doi.org/10.1016/S0167-8140(03)00245-7
KRY, S.F.; PETERSON, C.B.; HOWELL, R.M.; IZEWSKA, J.; LYE, J., CLARK, C.H. et al. Remote beam output audits: A global assessment of results out of tolerance. Phys Imaging Radiat Oncol 2018;7:39–44. https://doi.org/10.1016/j.phro.2018.08.005. DOI: https://doi.org/10.1016/j.phro.2018.08.005
RAMOS, F.D.S.; VASCONCELOS, R.D.S.; GONÇALVES, M.D.S.; OLIVEIRA, M.V.L. Análise comparativa dos testes de controle de qualidade em tomografia computadorizada de acordo com as legislações nacional e internacional. Brazilian J Radiat Sci 2015;3. https://doi.org/10.15392/bjrs.v3i1a.111. DOI: https://doi.org/10.15392/bjrs.v3i1A.111
LANDAUER - Radiation Monitoring and Medical Physics Consulting n.d. https://www.landauer.com/ (accessed January 3, 2023).
YUKIHARA, E.G.; MCKEEVER, S.W.S. Optically Stimulated Luminescence: Fundamentals and Applications. Wiley, 2011. DOI: https://doi.org/10.1002/9780470977064
SOUZA, S. O.; YAMAMOTO, T.; D'ERRICO, F. State of the art of solid state dosimetry. In: INTERNATIONAL JOINT CONFERENCE RADIO, 2014,. Gramado, Brazil.
BØTTER-JENSEN, L.; MCKEEVER, S.W.S. WINTLE AG. Optically Stimulated Luminescence Dosimetry. Amsterdam: Elsevier; 2003. DOI: https://doi.org/10.1016/B978-044450684-9/50091-X
ANTONOV-ROMANOVSKY, V.V.; KEIRUM-MARKUS, I.F.; POROSHINA, M.S.; TRAPEZNIKOVA, Z.A. Dosimetry of ionizing radiation with the aid of infrared sensitive phosphors. Conf. Acad. Sci. U.S.S.R. Peac. Uses At. Energy, Moscow: 1955, p. 239–50.
WINTLE, A.G. Luminescence dating: laboratory procedures and protocols. Radiat Meas 1997;27:769–817. DOI: https://doi.org/10.1016/S1350-4487(97)00220-5
AKSELROD, M.S.; KORTOV, V.S.; GORELOVA, E.A. Preparation and properties of a-Al2O3:C. Radiat Prot Dosimetry 1993;47:159–64. DOI: https://doi.org/10.1093/rpd/47.1-4.159
AKSELROD, M.S.; LUCAS, A.C.; POLF, J.C.; MCKEEVER, S.W.S. Optically stimulated luminescence of Al2O3. Radiat Meas 1998;29:391–9. DOI: https://doi.org/10.1016/S1350-4487(98)00061-4
MARKEY, B.G.; COLYOTT, L.E.; MCKEEVER, S.W.S. Time-resolved optically stimulated luminescence from a-Al2O3:C. Radiat Meas 1995;24:457–63. DOI: https://doi.org/10.1016/1350-4487(94)00119-L
YUKIHARA, E.G.; MCKEEVER, S.W.S.; AKSELROD, M.S. State of art: optically stimulated luminescence dosimetry - frontiers of future research. Radiat Meas 2014;71:15–24. DOI: https://doi.org/10.1016/j.radmeas.2014.03.023
SAWAKUCHI, G.O.; SAHOO, N.; GASPARIAN, P.B.R.; RODRIGUEZ, M.G.; ARCHAMBAULT, L., TITT, U.; et al. Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors. Phys Med Biol 2010;55. https://doi.org/10.1088/0031-9155/55/17/006. DOI: https://doi.org/10.1088/0031-9155/55/17/006
YUKIHARA, E.G.; GASPARIAN, P.B.R.; SAWAKUCHI, G.O.; RUAN, C.; AHMAD, S.; KALAVAGUNTA, C.; et al. Medical applications of optically stimulated luminescence dosimeters (OSLDs). Radiat. Meas., vol. 45, 2010, p. 658–62. https://doi.org/10.1016/j.radmeas.2009.12.034. DOI: https://doi.org/10.1016/j.radmeas.2009.12.034
MCKEEVER, S.W.S.; MOSCOVITCH, M. On the advantages and disadvantages of optically stimulated luminescence dosimetry and thermoluminescence dosimetry. Radiat Prot Dosimetry 2003;104:263–70. DOI: https://doi.org/10.1093/oxfordjournals.rpd.a006191
GASPARIAN, P.B.R.; RUAN, C.; AHMAD, S.; KALAVAGUNTA, C.; CHENG, C.Y.; YUKIHARA, E.G. Demonstrating the use of optically stimulated luminescence dosimeters (OSLDs) for measurement of staff radiation exposure in interventional fluoroscopy and helmet output factors in radiosurgery. Radiat Meas 2010;45. https://doi.org/10.1016/j.radmeas.2009.12.001. DOI: https://doi.org/10.1016/j.radmeas.2009.12.001
PRADHAN, A.S.; LEE, J.I.; KIM, J.L. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications. J Med Phys 2008;33:85–99. https://doi.org/10.4103/0971-6203.42748. DOI: https://doi.org/10.4103/0971-6203.42748
TWARDAK, A.; BILSKI, P.; MARCZEWSKA, B.; LEE, J.I.; KIM, J.L.; GIESZCZYK, W.; et al. Properties of lithium aluminate for application as an OSL dosimeter. Radiat Phys Chem 2014;104:76–9. https://doi.org/10.1016/j.radphyschem.2014.05.046. DOI: https://doi.org/10.1016/j.radphyschem.2014.05.046
YOSHIMURA, E.M.; YUKIHARA, E.G. Optically Stimulated Luminescence: searching for new dosimetric materials. Nucl Instruments Methods Phys Res B 2006;250:337–41. DOI: https://doi.org/10.1016/j.nimb.2006.04.134
OLIVEIRA, L.C.; BAFFA, O. A new luminescent material based on CaB6O10:Pb to detect radiation. J Lumin 2017;181:171–8. https://doi.org/10.1016/J.JLUMIN.2016.09.009. DOI: https://doi.org/10.1016/j.jlumin.2016.09.009
YUKIHARA, E.G.; DOULL, B.A.; GUSTAFSON, T.; OLIVEIRA, L.C.; KURT, K.; MILLIKEN, E.D. Optically stimulated luminescence of MgB4O7:Ce,Li for gamma and neutron dosimetry. J Lumin 2017;183:525–32. DOI: https://doi.org/10.1016/j.jlumin.2016.12.001
OLIVEIRA, L.C.; YUKIHARA, E.G.; BAFFA, O. MgO:Li,Ce,Sm as a high sensitive material for Optically Stimulated Luminescence dosimetry. Sci Rep 2016;6:24348. https://doi.org/10.1038/srep24348 DOI: https://doi.org/10.1038/srep24348
LEE, S.Y.; KIM, B.H.; LEE, K.J. An application of artificial neural intelligence for personal dose assessment using a multi-area OSL dosimetry system. Radiat Meas 2001;33:293–304. https://doi.org/10.1016/S1350-4487(00)00147-5. DOI: https://doi.org/10.1016/S1350-4487(00)00147-5
ESME, I.S.I.K.; IBRAHIM, I.S.I.K.; HÜSEYIN, T. Analysis and estimation of fading time from thermoluminescence glow curve by using artificial neural network, Radiation Effects and Defects in Solids, 2021;176:9-10, 765-776, DOI: 10.1080/10420150.2021.1954000 DOI: https://doi.org/10.1080/10420150.2021.1954000
ESPOSITO, M.; GHIRELLI, A.; PINI, S.; ALPI, P.; BARCA, R.; FONDELLI, S.; et al. Clinical implementation of 3D in vivo dosimetry for abdominal and pelvic stereotactic treatments. Radiother Oncol 2021;154:14–20. https://doi.org/10.1016/j.radonc.2020.09.011. DOI: https://doi.org/10.1016/j.radonc.2020.09.011
HAYASHI, H.; KIMOTO, N.; MAEDA, T.; TOMITA, E.; ASAHARA, T.; GOTO, S.; et al. A disposable OSL dosimeter for in vivo measurement of rectum dose during brachytherapy. Med Phys 2021;48:4621–35. https://doi.org/10.1002/MP.14857. DOI: https://doi.org/10.1002/mp.14857
WIPO - World Intellectual Property Organization n.d. https://www.wipo.int/portal/en/ (accessed January 2, 2023).
Welcome to Python.org n.d. https://www.python.org/ (accessed January 2, 2023).
ICRP - International Commission on Radiological Protection . ICRP Publication 109. Ottawa: ICRP, 2009.
Published
Issue
Section
License
Copyright (c) 2023 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/