The radioactive contamination of ground and surface water near a uranium mine in Malawi

Authors

  • L. J. Majawa University of Malawi https://orcid.org/0000-0002-1510-1854
  • O. A. Jegede North-West University, South Africa / iThemba LABS
  • V. M. Tshivhase North-West University, South Africa
  • B. T. Chobeka North-West University, South Africa
  • T. D. Mokgele North-West University, South Africa

DOI:

https://doi.org/10.15392/2319-0612.2024.2341

Keywords:

Kayelekera, Uranium mine, Radioactive element, ICP-MS

Abstract

Ground and surface water in the uranium mining area of Kayelekera in Malawi was assessed for concentration levels of radioactive metals. Potential health risks associated with the intake of these metals in drinking water from various sources were also estimated. Surface, groundwater and mine discharge water samples were collected and analysed for radio elemental concentration using inductively coupled plasma mass spectrometry analytical technique. The results indicated a high concentration of 238U in water samples from lower Sere river. The activity concentrations of 238U, 232Th and 40K were however below WHO recommended limit. Health risk assessment using average committed effective dose were below the global average. Excess lifetime cancer risk values with an average of  for borehole water was calculated and found to be below the global average. Radiologically, the water quality of Kayelekera area post uranium mining activities has not been compromised, however close monitoring and treating of drinking water is recommended

Downloads

Download data is not yet available.

Author Biography

  • L. J. Majawa, University of Malawi

    Lecturer of Physics in the Physics and Electronics Department at the University of Malawi.

    PhD in Applied radiation science from North-West University

References

SOLIMAN, N.F.; YOUNIS, A.M.; ELKADY, E.M. An insight into fractionation, toxicity, mobility and source apportionment of metals in sediments from El Temsah Lake, Suez Canal. Chemosphere, 222, 165–174, 2019. DOI: https://doi.org/10.1016/j.chemosphere.2019.01.009

YANG, K.; ZHU, L.; ZHAO, Y.; WEI, Z.; CHEN, X.; YAO, C.; MENG, Q.; ZHAO, R. A novel method for removing heavy metals from composting system: The combination of functional bacteria and adsorbent materials. Bioresource technology, 293, 122095, 2019. DOI: https://doi.org/10.1016/j.biortech.2019.122095

YI, L.; GAO, B.; LIU, H.; ZHANG, Y.; DU, C.; LI, Y. Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area. International Journal of Environmental Research and Public Health, 17(2), 548, 2000. DOI: https://doi.org/10.3390/ijerph17020548

DUNG, T. T. T.; CAPPUYNS, V.; SWENNEN, R.; PHUNG, N. K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology, 12(4), 335-353, 2013. DOI: https://doi.org/10.1007/s11157-013-9315-1

ALI, H.; KHAN, E. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological and Environmental Chemistry, 100(1), 6-19, 2018. DOI: https://doi.org/10.1080/02772248.2017.1413652

SINGH, U. K.; KUMAR, B. Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere, 174, 183-199, 2017. DOI: https://doi.org/10.1016/j.chemosphere.2017.01.103

OKEYODE, I. C.; MAKINDE, V.; BADA, B. S.; MUSTAPHA, A. O.; JEGEDE, O. A.; AJAYI, O. A.; OLAGBAJU, P. O. Concentration of natural radionuclides and heavy metals in quarry pit soils in Abeokuta, Ogun state, south West Nigeria. Niger. J. Phys, 27(2), 2018.

AKHTAR, N.; SYAKIR ISHAK, M. I.; BHAWANI, S. A.; UMAR, K. Various natural and anthropogenic factors responsible for water quality degradation: A review. Water, 13(19), 2660, 2021. DOI: https://doi.org/10.3390/w13192660

MARTINEZ-COLON, M.; HALLOCK, P.; GREEN-RUIZ, C. Strategies for using shallow-water benthic foraminifers as bioindicators of potentially toxic elements: a review. Journal of Foraminiferal Research, 39(4), 278-299, 2009. DOI: https://doi.org/10.2113/gsjfr.39.4.278

MOHAMMED, A. S.; KAPRI, A.; GOEL, R. Heavy metal pollution: source, impact, and remedies. Biomanagement of metal-contaminated soils (pp. 1-28). Springer, Dordrecht, 2011. DOI: https://doi.org/10.1007/978-94-007-1914-9_1

GIRI, S.; MAHATO, M. K.; SINGH, G.; JHA, V. N. Risk assessment due to intake of heavy metals through the ingestion of groundwater around two proposed uranium mining areas in Jharkhand, India. Environmental monitoring and assessment, 184(3), 1351-1358, 2012. DOI: https://doi.org/10.1007/s10661-011-2045-3

RAGHAVENDRA, T.; RAMAKRISHNA, S. U. B.; SRINIVASULU, D.; VIJAYALAKSHMI, T.; HIMABINDU, V.; ARUNACHALAM, J. Risk assessment due to intake of trace metals through the ingestion of groundwater around proposed uranium mining areas of Nalgonda district, Telangana, India. Applied Water Science, 10(1), 1-6, 2020. DOI: https://doi.org/10.1007/s13201-019-1089-3

KACMAZ, H. Assessment of heavy metal contamination in natural waters of Dereli, Giresun: an area containing mineral deposits in northeastern Turkey. Environmental monitoring and assessment, 192(2), 1-12, 2020. DOI: https://doi.org/10.1007/s10661-019-8057-0

CANU, I. G.; LAURENT, O.; PIRES, N.; LAURIER, D.; DUBLINEAU, I. Health effects of naturally radioactive water ingestion: the need for enhanced studies. Environmental health perspectives, 119(12), 1676-1680, 2011. DOI: https://doi.org/10.1289/ehp.1003224

DUBLINEAU, I.; SOUIDI, M.; GUEGUEN, Y.; LESTAEVEL, P.; BERTHO, J. M.; MANENS, L.; AIGUEPERSE, J. Unexpected lack of deleterious effects of uranium on physiological systems following a chronic oral intake in adult rat. BioMed research international, 2014. DOI: https://doi.org/10.1155/2014/181989

KURTTIO, P.; KOMULAINEN, H.; LEINO, A.; SALONEN, L.; AUVINEN, A.; SAHA, H. Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environmental health perspectives, 113(1), 68-72, 2005. DOI: https://doi.org/10.1289/ehp.7475

BRUGGE, D.; BUCHNER, V. Health effects of uranium: new research findings, 231-249, 2011. DOI: https://doi.org/10.1515/REVEH.2011.032

CONDE, M.; KALLIS, G. The global uranium rush and its Africa frontier. Effects, reactions and social movements in Namibia. Global Environmental Change, 22(3), 596-610, 2012. DOI: https://doi.org/10.1016/j.gloenvcha.2012.03.007

BESADA, H.; MARTIN, P. Mining codes in Africa: emergence of a ‘fourth’generation. Cambridge Review of International Affairs, 28(2), 263-282, 2015. DOI: https://doi.org/10.1080/09557571.2013.840823

MAXWELL, O.; WAGIRAN, H.; ADEWOYIN, O.; JOEL, E. S.; ADELEYE, N.; EMBONG, Z.; TENEBE, I. T. Radiological and chemical toxicity risks of uranium in groundwater based-drinking at Immigration Headquarters Gosa and Federal Housing Lugbe area of Abuja, North Central Nigeria. Journal of Radioanalytical and Nuclear Chemistry, 311(2), 1185-1191, 2017. DOI: https://doi.org/10.1007/s10967-016-4997-9

ZAMORA, M. L.; TRACY, B. L.; ZIELINSKI, J. M.; MEYERHOF, D. P.; MOSS, M. A. Chronic ingestion of uranium in drinking water: a study of kidney bioeffects in humans. Toxicological Sciences, 43(1), 68-77, 1998. DOI: https://doi.org/10.1093/toxsci/43.1.68

HAAKONDE, T.; YABE, J.; CHOONGO, K.; CHONGWE, G.; ISLAM, M. Preliminary assessment of uranium contamination in drinking water sources near a uranium mine in the Siavonga District, Zambia, and associated health risks. Mine water and the environment, 39(4), 735-745, 2020. DOI: https://doi.org/10.1007/s10230-020-00731-5

BECKER, E.; KARNER, K.; CORBIN, J. C.; MWENELUPEMBE, J. The geology of the Kayelekera uranium mine, Malawi, 2014.

OLAGBAJU, O. P., WOJUOLA, O. B., & TSHIVHASE, M. V. Radiological assessment of irrigation water used in Rustenburg, South Africa. Radiation Protection Dosimetry, 199(8-9), 781-784, 2023.

USEPA - United States Environmental Protection Agency. Federal Guidance Report No. 13: Cancer Risk Coefficients for Environmental Exposure to Radionuclides; EPA 402-R-99−001, U.S. Environmental Protection Agency: Washington, DC, USA, 1999.

IAEA - International Atomic Energy Agency. Guidelines for radioelement mapping using gamma ray spectrometry data: In (pp.173), 2003.

RHODES, M. C.; KEIL, K. G.; FREDERICK, W. T.; PAPURA, T. R.; LEITHNER, J. S.; PETERSON, J. M.; MACDONELL, M. M. Utilizing isotopic uranium ratios in groundwater evaluations at NFSS, Water Management Conference, Tucson, Arizona, 2006.

UNSCEAR. Sources and effects of ionizing radiation: sources. Vol. 1. New York: United Nations Sales Publication, United Nations, 2000.

STEWART, F. ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs–threshold doses for tissue reactions in a radiation protection context. ICRP Publication 118. Ann. ICRP 41(1-2), 1, 111961–322, 2012. DOI: https://doi.org/10.1016/j.icrp.2012.02.001

DOEA - Department of Environmental Affairs. The framework for the management of contaminated land, South Africa, 2010.

TURYAHABWA, E. R.; JURUA, E.; ORIADA, R.; MUGAIGA, A.; ENJIKU, B. Determination of natural radioactivity levels due to mine tailings from selected mines in Southwestern Uganda. Environmental Earth Sciences, 6(6), 154-163, 2016.

OLAGBAJU, O. P.; WOJUOLA, O. B.; TSHIVHASE, M. V. Radiological assessment of irrigation water used in Rustenburg, South Africa. Radiation Protection Dosimetry, 199(8-9), 781-784, 2023. DOI: https://doi.org/10.1093/rpd/ncad080

MAJAWA, L. J.; TSHIVHASE, V. M.; DLAMINI, T. Radioactivity assessment of surface soil in the vicinity of a uranium mine in Malawi. Radiation Protection Dosimetry, 198(17), 1353-1360, 2022. DOI: https://doi.org/10.1093/rpd/ncac173

MUHAMMAD, A. N.; ISMAIL, A. F.; GARBA, N. N. Annual effective dose associated with radioactivity in drinking water from tin mining areas in north-western Nigeria. Journal of Radiation research and applied Sciences, 15(3), 96-102, 2022. DOI: https://doi.org/10.1016/j.jrras.2022.06.008

MATHUTHU, M.; UUSHONA, V.; INDONGO, V. Radiological safety of groundwater around a uranium mine in Namibia. Physics and Chemistry of the Earth, Parts A/B/C, 122, 102915, 2021. DOI: https://doi.org/10.1016/j.pce.2020.102915

SAHOO, S. K.; JHA, V. N.; PATRA, A. C.; JHA, S. K.; KULKARNI, M. S. Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water–a global perspective. Environmental Advances, 2, 100020, 2020. DOI: https://doi.org/10.1016/j.envadv.2020.100020

WHO - World Health Organization. A global overview of national regulations and standards for drinking-water quality, 2021.

WHO - World Health Organization. Guidelines for drinking water quality vol 1. 4th edition, 2011.

SALAHEL DIN, K.; ALI, K.; HARB, S.; ABBADY, A. B. Natural radionuclides in groundwater from Qena governorate, Egypt. Environmental Forensics, 22(1-2), 48-55, 2021. DOI: https://doi.org/10.1080/15275922.2020.1834026

ICRP - International Commission on Radiological Protection. Recommendations of the International Commission on Radiological Protection. Ann. ICRP 2008(37), 2–4, 2007.

RAVISANKAR, R.; CHANDRAMOHAN, J.; CHANDRASEKARAN, A.; JEBAKUMAR, J. P. P.; VIJAYALAKSHMI, I.; VIJAYAGOPAL, P.; VENKATRAMAN, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Marine Pollution Bulletin, 97(1-2), 419-430, 2015. DOI: https://doi.org/10.1016/j.marpolbul.2015.05.058

Downloads

Published

2024-02-02

Issue

Section

Articles

How to Cite

The radioactive contamination of ground and surface water near a uranium mine in Malawi. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 1, p. e2341, 2024. DOI: 10.15392/2319-0612.2024.2341. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2341. Acesso em: 21 dec. 2024.

Similar Articles

1-10 of 326

You may also start an advanced similarity search for this article.