Creating a collaborative system for physical protection simulation in nuclear facility with virtual

Authors

  • André Santo Centro UniCarioca / Instituto de Engenharia Nuclear
  • Antonio Mól Centro UniCarioca / Instituto de Engenharia Nuclear
  • Daniel Machado Instituto de Engenharia Nuclear
  • Eugenio Marins Instituto de Engenharia Nuclear

DOI:

https://doi.org/10.15392/2319-0612.2024.2356

Keywords:

Virtual Reality, Physical security, Collaborative System

Abstract

In recent years, the importance of improving physical protection in nuclear facilities has been observed, mainly due to the increasing progress of the Brazilian nuclear program. Physical protection requires great attention and strategies that must be designed, tested and improved in order to maintain the physical integrity of the facilities and population. These strategies should be tested in exercises to see if the physical protection plan - PPP is in accordance with the actual conditions of the facility, such as: visibility of the borders and terrain, number and equipment of the team in charge of defense (security guards), detection equipment and access times of central security point agents to the places where suspicious activities have been detected. In this sense, this article aimed to develop a tool that allow the visualization and planning of action strategies in a virtual environment, aiming to improve security. A virtual model of the Instituto de Engenharia Nuclear (IEN) was created, with close representations of reality and the virtual characters can transit and interact in real time. Various situations that affect the visibility and detection of opponents, such as natural and artificial lighting, climatic phenomena, shadows and others can be simulated with a high degree of realism. In addition, the tool has a surveillance system through virtual cameras, enabling monitoring of the environment. Thus, this system will allow to simulate approach strategies, allowing an evaluation of the procedures performed, as well as assist in physical protection training in radioactive and nuclear facilities.

Downloads

Download data is not yet available.

References

DA VEIGA, J. E. Energia Nuclear: do anátema ao diálogo. Senac, 2018.

CNEN; Resolução CNEN-NN-2.01 - Proteção Física de Materiais e Instalações Nucleares, 2019. Available at: http://appasp.cnen.gov.br/seguranca/normas/pdf/Nrm-NN201.pdf. Accessed on: December 1, 2023.

BROOKS, L.F. National Nuclear Security Administration; Preventing Nuclear Terrorism: Towards an Integrative Approach; In Nuclear Security: Global Directions for the Future. Proceedings of an International Conference. Londres, p. 16–18 Março 2005.

INTERNATIONAL ATOMIC ENERGY AGENCY. Promoting Nuclear Security: What the IAEA is doing. Division of Public Information 06-30961/FS Series 1/03 Rev.1/E, 2007.

PERUZZO, J. Física e Energia Nuclear. ed. 1, São Paulo: Livraria da Física, 2012.

STACKPOLE, B., OKSENDAHL, E. Security Strategy: From Requirements to Reality. ed. 1, Nova Iorque: Auerbach Publications, 2010, 346p. DOI: https://doi.org/10.1201/EBK1439827338

BURDEA, G. C., COIFFET, P. Virtual Reality Technology. 2. ed. Canada: John Wiley & Sons, p. 2-4, 2003..

MÓL, A.C.A., LAPA C.M.F., JORGE, C.A., OLIVEIRA, B.A., BOTELHO, F.M. Virtual Reality 3d Stereo Technology to Improve Motivation in The Learning Process of Use of Nuclear Energy in Electric Power Generation, In: INAC 2007 - International Nuclear Atlantic Conference, 2007, Santos - SP. INAC 2007a.

FREITAS, V. G. G., PEREIRA, C. M. N. A., MÓL, A. C. A., JORGE, C. A. F. Radiation Dose Rate Map Interpolation in Nuclear Plants Using Neural Networks and Virtual Reality Techniques. Annals of Nuclear Energy, 2010.

GONÇALVES, J. G. M., et al. Virtual Reality Based System for Nuclear Safeguards Applications. IAEA Symposium on International Safeguard, 2010.

MÓL, A. C. A., JORGE, C. A. F., COUTO, P. M. Estudo do Uso de Núcleos de Jogos na Criação de Ambientes Virtuais para Suporte ao Planejamento de Evacuação de Prédios e Circulação em Áreas Sujeitas a Radiação. Mostra de Produtos e Protótipos de RV e RA – IX Symposium on Virtual and Augmented Reality – SVR, 2007b.

MÓL, A. C. A., JORGE, C. A. F., COUTO, P. M. Using a Game Engine for VR Simulations to Support Evacuation Planning. IEEE Computer Graphics and Applications, v. 28, p.6 – 12, 2008. DOI: https://doi.org/10.1109/MCG.2008.61

AUGUSTO, S. C., MÓL, A. C. A., COUTO, P. M., SALES, D. S. Using Virtual Reality in the Training of Security Staff and Evaluation of Physical Protection Barriers in Nuclear Facilities. International Nuclear Atlantic Conference, 2009.

MELO, R. C. Estudo de pressupostos tecnológicos e cognitivos para aperfeiçoamento de laboratórios virtuais e ambientes colaborativos virtuais para radiofarmácia – Tese de Doutorado, IPEN, 2009.

FIALHO, A. B. Realidade virtual e aumentada: Tecnologias para aplicações profissionais. ed. 1, São Paulo: Erica, 2018.

HARPER, J. Mastering Autodesk 3ds Max 2013. Camp Hill: Sybex, 2012.

CALCIOLARI, F. 3ds Max 2012 - Modelagem, Render, Efeitos e Animação. ed. 1, São Paulo: Erica, 2011.

TRENHOLME, D., SMITH, S. P. Computer Game Engines for Developing First-Person Virtual Environments. Virtual Reality, p. 181 – 187. 2008. DOI: https://doi.org/10.1007/s10055-008-0092-z

BLACKMAN, S. Beginning 3D Game Development with Unity 4: All-in-one, multi-platform game development. Nova Iorque: Apress Academic, 2011. DOI: https://doi.org/10.1007/978-1-4302-3423-4

Downloads

Published

2024-04-03

Issue

Section

Articles

How to Cite

Creating a collaborative system for physical protection simulation in nuclear facility with virtual. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 2, p. e2356, 2024. DOI: 10.15392/2319-0612.2024.2356. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2356.. Acesso em: 17 nov. 2024.

Similar Articles

1-10 of 351

You may also start an advanced similarity search for this article.