Synchrotron Microtomography to Explore the Anatomy of Insects

Authors

  • Gabriela Sena Souza Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil https://orcid.org/0000-0003-1369-7460
  • Thaina Alvarenga Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Tayane Tanure Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Samara Oliveira Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Katrine Paiva Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Gustavo Colaço Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Arissa Pickler Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Gabriel Fidalgo Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Liebert Nogueira Oral Research Laboratory (ORL), Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
  • Marcos Colaço Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
  • Ademir Xavier da Silva COPPE/Federal University of Rio de Janeiro, Brazil
  • Cícero B. Mello Federal Fluminense University, Niterói, Brazil
  • Ruan Ingliton Federal Fluminense University, Niterói, Brazil
  • Marcelo Gonzalez Federal Fluminense University, Niterói, Brazil
  • Patricia Azambuja Federal Fluminense University, Niterói, Brazil
  • Regina Barroso Laboratory of Applied Physics to Biomedical Sciences, Physics Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil

DOI:

https://doi.org/10.15392/2319-0612.2024.2519

Keywords:

computed microtomography, phase contrast, synchrotron

Abstract

Recent advancements in high intensity synchrotron sources have revolutionized the field of non-destructive imaging, particularly in biological sciences. Synchrotron radiation micro-computed tomography (SR-microCT) has emerged as a powerful tool for visualizing complex 3D structures, from dense materials to delicate biological specimens. This technique enables unprecedented spatial resolution, facilitating detailed analysis of sub-tissue structures within organisms without invasive procedures. Additionally, X-ray phase-contrast imaging (PCI) has enhanced the visibility of soft tissues by exploiting phase shifts, complementing traditional absorption-based methods. This paper highlights the capabilities of SR-PCI in biological research, demonstrating its application on millimeter-scale samples of Aedes aegypti mosquitos and Drosophila melanogaster fruit flies at prominent synchrotron facilities.

Downloads

Download data is not yet available.

References

[1] ABRAMI, A. et al. Medical applications of synchrotron radiation at the SYRMEP beamline at ELETTRA. Nuclear Instruments and Methods in Physics Research Section A, v. 548, p. 221–227, 2005. DOI: 10.1016/j.nima.2005.05.029. DOI: https://doi.org/10.1016/j.nima.2005.03.093

[2] ALBERS, J. et al. Elastic transformation of histological slices allows precise co-registration with microCT data sets for a refined virtual histology approach. Scientific Reports, v. 11, p. 10846, 2021. DOI: 10.1038/s41598-021-90245-5. DOI: https://doi.org/10.1038/s41598-021-89841-w

[3] ARCHILHA, N. et al. MOGNO, the nano and microtomography beamline at Sirius, the Brazilian synchrotron light source. Journal of Physics: Conference Series, v. 2380, n. 1, p. 012123, 2022. DOI: 10.1088/1742-6596/2380/1/012123. DOI: https://doi.org/10.1088/1742-6596/2380/1/012123

[4] BRADY, O. J.; HAY, S. I. The global expansion of dengue: how Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annual Review of Entomology, v. 65, p. 191–208, 2020. DOI: 10.1146/annurev-ento-011019-024918. DOI: https://doi.org/10.1146/annurev-ento-011019-024918

[5] GIGLIO, A. et al. Exploring compound eyes in adults of four coleopteran species using synchrotron X-ray phase-contrast microtomography (SR-PhC Micro-CT). Life, v. 12, n. 5, p. 741, 2022. DOI: 10.3390/life12050741. DOI: https://doi.org/10.3390/life12050741

[6] KILLINY, N.; BRODERSEN, C. R. Using X-ray micro-computed tomography to three-dimensionally visualize the foregut of the glassy-winged Sharpshooter (Homalodisca vitripennis). Insects, v. 13, n. 8, p. 710, 2022. DOI: 10.3390/insects13080710. DOI: https://doi.org/10.3390/insects13080710

[7] LETA, S. et al. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. International Journal of Infectious Diseases, v. 67, p. 25–35, 2018. DOI: 10.1016/j.ijid.2017.11.026. DOI: https://doi.org/10.1016/j.ijid.2017.11.026

[8] LIU, Y. et al. Recent advances in synchrotron-based hard X-ray phase contrast imaging. Journal of Physics D: Applied Physics, v. 46, n. 49, p. 494001, 2013. DOI: 10.1088/0022-3727/46/49/494001. DOI: https://doi.org/10.1088/0022-3727/46/49/494001

[9] MORIMOTO, J. et al. Assessing anatomical changes in male reproductive organs in response to larval crowding using micro-computed tomography imaging. Neotropical Entomology, v. 51, n. 4, p. 526–535, 2022. DOI: 10.1007/s13744-022-00989-6. DOI: https://doi.org/10.1007/s13744-022-00976-5

[10] MUNDIM-POMBO, A. P. M. et al. Aedes aegypti: egg morphology and embryonic development. Parasites & Vectors, v. 14, p. 1–12, 2021. DOI: 10.1186/s13071-021-04642-3. DOI: https://doi.org/10.1186/s13071-021-05024-6

[11] PERREAU, M.; HAELEWATERS, D.; TAFFOREAU, P. A parasitic coevolution since the Miocene revealed by phase-contrast synchrotron X-ray microtomography and the study of natural history collections. Scientific Reports, v. 11, n. 1, p. 2672, 2021. DOI: 10.1038/s41598-021-82397-0. DOI: https://doi.org/10.1038/s41598-020-79481-x

[12] SENA, G. et al. Synchrotron X-ray biosample imaging: opportunities and challenges. Biophysical Reviews, v. 14, n. 3, p. 625–633, 2022. DOI: 10.1007/s12551-022-00945-3. DOI: https://doi.org/10.1007/s12551-022-00964-4

[13] TOLWINSKI, N. S. Introduction: Drosophila – A model system for developmental biology. Journal of Developmental Biology, v. 5, n. 3, p. 9–10, 2017. DOI: 10.3390/jdb5030009. DOI: https://doi.org/10.3390/jdb5030009

[14] VOMMARO, M. L. et al. Anatomical study of the red flour beetle using synchrotron radiation X‐ray phase‐contrast micro‐tomography. Journal of Anatomy, v. 242, n. 3, p. 510–524, 2023. DOI: 10.1111/joa.13829. DOI: https://doi.org/10.1111/joa.13796

[15] WILKINS, S. W. et al. On the evolution and relative merits of hard X-ray phase-contrast imaging methods. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, v. 372, p. 20130021, 2014. DOI: 10.1098/rsta.2013.0021. DOI: https://doi.org/10.1098/rsta.2013.0021

[16] YAMANY, A. S.; ADHAM, F. K.; ABDEL-GABER, R. Morphological description of the pupa of Aedes aegypti (Diptera: Culicidae) using a scanning electron microscope. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, v. 76, n. 1, p. 43–54, 2024. DOI: 10.1590/1678-4162-14011. DOI: https://doi.org/10.1590/1678-4162-13120

Downloads

Published

2025-05-26

How to Cite

Synchrotron Microtomography to Explore the Anatomy of Insects. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2519, 2025. DOI: 10.15392/2319-0612.2024.2519. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2519. Acesso em: 31 may. 2025.