Characterization of applicator material for treatment of superficial lesions in brachytherapy

Authors

  • Juan Carlos Chrisostomo Lamônica Universidade Federal de Minas Gerais
  • Marcela de Morais Freitas UFMG
  • Mariana de Oliveira Reis UFMG
  • Luciana Batista Nogueira UFMG
  • Jony Marques Geraldo UFMG
  • Clara B Nascimento Hospital Luxemburgo
  • Arnoldo Mafra Hospital Luxemburgo
  • Adriana de Souza Medeiros Batista Departamento de Anatomia e Imagem, Faculdade de Medicina, Universidade Federal de Minas Gerais.

DOI:

https://doi.org/10.15392/2319-0612.2024.2611

Keywords:

Brachytherapy, superficial lesions, dimethyl polysiloxane, applicator

Abstract

The treatment of superficial lesions by brachytherapy is performed using radioactive sources positioned inside tumors or at a short distance from them, to deposit the prescribed dose in the target volume. In the case of treating skin lesions, due to the proximity between the source and the patient's surface, it is important to use applicators that conduct the radiation source to the region to be treated, ensuring the safety and hygiene of the process. The treatment of keloids, for example, can be performed by brachytherapy. Considering that the applicators must undergo rigorous quality control, this study presents an evaluation of an applicator developed for the treatment of skin lesions, consisting of fifteen spheres of synthetic material, for use in High dose rate brachytherapy (HDR) equipment, model Nucletron Digital V3, equipped with an Ir-192 source. It was considered important to determine whether the spheres are suitable for medical use, direct contact with the patient's skin and sterilization methods. Furthermore, it was necessary to consider the material's resistance to the irradiation process, since the spheres must be used in multiple applications. In this sense, it was necessary to define the material of the spheres and, through this characterization, consider their suitability for the proposed use. Since the spheres were acquired with generic specifications, this study aimed to perform analyses to characterize the material, defining its composition. Consequently, the focus was to evaluate their safe use in the brachytherapy applicator.

Downloads

Download data is not yet available.

Author Biographies

  • Juan Carlos Chrisostomo Lamônica, Universidade Federal de Minas Gerais

    Doutorando do ´PPG em Ciências e Técnicas Nucleares da UFMG, residente em Física Médica no Hospital Mater Dai.

  • Marcela de Morais Freitas, UFMG

    Graduanda de Tecnologia em Radiologia pela Faculdade de Medicina da UFMG.

  • Mariana de Oliveira Reis, UFMG

    Doutoranda do PPG em Ciências e Técnicas Nucleares da UFMG.

  • Luciana Batista Nogueira, UFMG

    Professora do Departamento de Anatomia e Imagem da Faculdade de Medicina da UFMG.

  • Jony Marques Geraldo, UFMG

    Professor do Departamento de Anatomia e Imagem da Faculdade de Medicina da UFMG. Físico médico do Hospital Luxemburgo e Hospital Alberto Cavalcante.

  • Clara B Nascimento, Hospital Luxemburgo

    Dosimetrista do Hospital Luxemburgo.

  • Arnoldo Mafra, Hospital Luxemburgo

    Radioterapeuta do Hospital Luxemburgo.

References

[1] SALVAJOLI, J. V. et al. Radioterapia em Oncologia. 2. ed. São Paulo: Atheneu, 2013. p. 161-218. ISBN-10. 8538803816.

[2] SKOWRONEK, J. Brachytherapy in the treatment of skin cancer: an overview. Advances in Dermatology and Allergology/Post¸epy Dermatologii i Alergologii, Termedia Publishing, v. 32, n. 5, p. 362-367, 2015. DOI: https://doi.org/10.5114/pdia.2015.54746

[3] DAURADE, M. et al. Efficacy of surgical excision and brachytherapy in the treatment of keloids: A retrospective cohort study. Advances in Skin & Wound Care, LWW, v. 33, n. 11, p. 1–6, 2020. DOI: https://doi.org/10.1097/01.ASW.0000717228.02752.4e

[4] OHTA, M. et al. Verification of evaluation accuracy of absorbed dose in the dose-evaluation system for Iridium-192 brachytherapy for treatment of keloids. Biomedical Physics & Engineering Express, IOP Publishing, v. 4, n. 2, p. 025022, 2018. DOI: https://doi.org/10.1088/2057-1976/aa9d76

[5] BIJLARD, E. et al. Burden of keloid disease: a cross-sectional health-related quality of life assessment. Acta dermato-venereologica, v. 97, n. 2, p. 225–229, 2017. DOI: https://doi.org/10.2340/00015555-2498

[6] HOANG, D. et al. Surgical excision and adjuvant brachytherapy vs external beam radiation for the effective treatment of keloids: 10-year institutional retrospective analysis. Aesthetic surgery journal, Oxford University Press, v. 37, n. 2, p. 212–225, 2017. DOI: https://doi.org/10.1093/asj/sjw124

[7] KHAN, F. M.; GIBBONS, J. P. Khan’s the physics of radiation therapy. 5. ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2014. ISBN 978-1-4511-8245-3.

[8] WEN, A. et al. Comparative Analysis of 60Co and 192Ir Sources in High Dose Rate Brachytherapy for Cervical Cancer. Cancers, v. 14, n. 19, 2022. ISSN 2072-6694. DOI: https://doi.org/10.3390/cancers14194749

[9] ALMUQRIN, A. H. et al. Exploring the impact of Bi2O3 particle size on the efficacy of dimethylpolysiloxane for medical gamma/X-rays shielding applications. Radiation Physics and Chemistry, v. 220, p. 111629, 2024. DOI: https://doi.org/10.1016/j.radphyschem.2024.111629

[10] GOUDA, M. M.; ZARD, K. An extensive investigation on gamma shielding properties of dimethylpolysiloxane modified with nano sized SnO2 and CdO. Radiation Physics and Chemistry, v. 218, p. 111588, 2024. DOI: https://doi.org/10.1016/j.radphyschem.2024.111588

[11] GOUDA, M. M. et al. Nano tin oxide/dimethyl polysiloxane reinforced composite as a flexible radiation protecting material. Scientific Reports, v. 13, n. 1, p. 210, 2023. DOI: https://doi.org/10.1038/s41598-023-27464-z

[12] DONG, F. et al. Thermal degradation kinetics of functional polysiloxane with pendent γ-chloropropyl groups. Polymer Bulletin, v. 78, p. 1-14, 2021. DOI: https://doi.org/10.1007/s00289-019-03089-z

[13] STEINBACH, J. C. et al. A process analytical concept for in-line FTIR monitoring of polysiloxane formation. Polymers, v. 12, n. 11, p. 2473, 2020. DOI: https://doi.org/10.3390/polym12112473

[14] WÓJCIK-BANIA, M. Influence of the addition of organo-montmorillonite nanofiller on cross-linking of polysiloxanes–FTIR studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 252, p. 119491, 2021. DOI: https://doi.org/10.1016/j.saa.2021.119491

[15] DESHPANDE, G., REZAC, M. E. Kinetic aspects of the thermal degradation of poly (dimethyl siloxane) and poly (dimethyl diphenyl siloxane). Polymer Degradation and Stability, v. 76, n. 1, p. 17-24, 2002. DOI: https://doi.org/10.1016/S0141-3910(01)00261-0

[16] REDONDO, S. U. A. et al. Estudo da decomposição térmica de compósitos fibras de celulose/silicona. In: Proceedings of the 2002 Congresso Brasileiro de Engenharia e Ciências dos Materiais, Natal, 09 a 13 de novembro, vol. 1, pp. 1692-1698, 2002.

[17] LIU, B. et al. Gamma irradiation-induced degradation of silicone encapsulation. Materials Today Communications, v. 31, p. 103476, 2022. DOI: https://doi.org/10.1016/j.mtcomm.2022.103476

[18] TALLEY, S. J. et al. Flexible 3D printed silicones for gamma and neutron radiation shielding. Radiation Physics and Chemistry, v. 188, p. 109616, 2021. DOI: https://doi.org/10.1016/j.radphyschem.2021.109616

[19] MAEYAMA, T. et al. Development of a silicone-based radio-fluorogenic dosimeter using dihydrorhodamine 6G. Physica Medica, v. 114, p. 102684, 2023. DOI: https://doi.org/10.1016/j.ejmp.2023.102684

[20] CARTURAN, S. M. et al. Additive manufacturing of high-performance, flexible 3D siloxane-based scintillators through the sol-gel route. Applied Materials Today, v. 39, p. 102313, 2024. DOI: https://doi.org/10.1016/j.apmt.2024.102313

Downloads

Published

2025-01-06

How to Cite

Characterization of applicator material for treatment of superficial lesions in brachytherapy. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4A (Suppl.), p. e2611, 2025. DOI: 10.15392/2319-0612.2024.2611. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2611. Acesso em: 22 jan. 2025.

Similar Articles

1-10 of 47

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)