Geometrical optimization of PWR spacer grids using GeN-Foam and Genetic Algorithms

Authors

  • Carlos Rodrigo Dias Centro de Desenvolvimento da Tecnologia Nuclear
  • Tiago Augusto Santiago Vieira Centro de Desenvolvimento da Tecnologia Nuclear
  • Andre Augusto Campagnole dos Santos Centro de Desenvolvimento da Tecnologia Nuclear
  • Graiciany de Paula Barros Centro de Desenvolvimento da Tecnologia Nuclear
  • Vitor Vasconcelos Araújo Silva Centro de Desenvolvimento da Tecnologia Nuclear
  • Ana Luiza Miranda Froes Centro de Desenvolvimento da Tecnologia Nuclear
  • Rebeca Cabral Gonçalves Centro de Desenvolvimento da Tecnologia Nuclear
  • Keferson de Almeida Carvalho Centro de Desenvolvimento da Tecnologia Nuclear
  • Higor Fabiano Pereira de Castro Centro de Desenvolvimento da Tecnologia Nuclear

DOI:

https://doi.org/10.15392/2319-0612.2024.2704

Keywords:

GeN-Foam, Spacer grids, PWR, Optimization

Abstract

This paper presents the results of Computational Fluid Dynamics (CFD) oriented geometrical optimization using the GeN-Foam solver applied to subchannels of the fuel assembly in a PWR-type nuclear reactor. GeN-Foam is a coarse mesh OpenFOAM solver designed to study nuclear engineering problems involving the coupled solution of thermohydraulics, neutronics and thermomechanics. However, the solver could be used for complex geometry simulations, enabling multi-scale coupled simulations. To use GeN-Foam under these conditions, the results of the code for complex geometry simulation had to be evaluated. This assessment involved comparing  the results obtained with the solver and those presented in a literature reference study. Despite the higher numerical diffusivity of the solver, this comparison demonstrated that GeN-Foam is capable of studying the fluid dynamics of fuel assemblies in nuclear reactors for both coarse and refined geometry conditions. After GeN-Foam was assessed, optimization was performed on subchannels of a fuel assembly using Genetic Algorithms (GA), evaluating the influence of geometric parameters of the spacer grids to minimize pressure drop and maximize secondary flow. Pareto Front solutions were assessed to identify a geometry that best balanced these two objectives. The optimized model showed better results than the reference study, as expected.  However, the results also highlight the need to incorporate thermal physics and neutronics to ensure that the optimized solution meets the subchannel´s flow and heat exchange requirements. All tools used in this work are well-established in the literature, free, and open-source.

Downloads

Download data is not yet available.

References

YODER, G. L. Heat Transfer Near Spacer Grids in Rod Bundles. National Heat Transfer Conference, 1985.

SANTOS, A. A. C. dos. Investigação Numérica e Experimental do Escoamento de Água em Feixe de Varetas Representativo de Elementos Combustíveis Nucleares de Reatores do Tipo Pwr. Tese apresentada ao Programa de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Minas Gerais, 2012.

KOTRAGOUDA, N. B. Application of Genetic Algorithms and CFD for Flow Control. University of Kentucky Master's Thesis, 2007.

VERSTEEG, H. K., MALALASEKERA, W. An introduction to computational fluid dynamics – The finite volume method, 2a Edição, Prentice Hall, 2007.

FIORINA, C., CLIFFORD, I., AUFIERO, M., MIKITYUK, K. GeN-Foam: a novel OpenFOAM® based multi-physics solver for2D/3D transient analysis of nuclear reactors. Nuclear Engineering and Design, vol. 294, pp. 24–37, 2015. DOI: https://doi.org/10.1016/j.nucengdes.2015.05.035

GEN-FOAM. Página do projeto no GitLab. Disponível em: <https://gitlab.com/foam-for-nuclear/GeN-Foam>. Acesso em: 21 de abril de 2023.

OPENFOAM. Página principal. Disponível em: <https://www.openfoam.com/>. Acesso em: 20 de abril de 2023.

KAROUTAS, Z., GU, C., SHOLIN B., 3-D Flow analyses for design of Nuclear Fuel Spacer. Proceedings of the 7th International Meeting on Nuclear Reactor Thermal-hydraulics NURETH-7, vol. 1, pp. 3153-3174, 1995.

CHUN, T. H., OH, D. S. A pressure drop model for spacer grids with and without flow mixing vanes, Journal of Nuclear Science and Technology, vol. 35, n. 7, pp. 508-510 (1998). DOI: https://doi.org/10.1080/18811248.1998.9733899

GILL, P. E., Murray, W., Wright, M. H. Practical Optimization. Academic Press Inc., 1981.

YANG, X. S., KOZIEL, S. Comput. Optimization, Methods and Algorithms. Studies in Computational Intelligence, 356, pp. 1-11, 2011. DOI: https://doi.org/10.1007/978-3-642-20859-1_1

MICHALEWICZ, Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer-Verlag, Basel, 1992. DOI: https://doi.org/10.1007/978-3-662-02830-8

HOLLAND, J. H. Searching Nonlinear Functions for High Values. Applied Mathematics and Computation, vol. 32, pp. 255-254, 1989. DOI: https://doi.org/10.1016/0096-3003(89)90096-9

WANG, G., DING, G., LIU, R., XIE, D., WU, Y., MIAO, X. Multi-objective optimization of a bidirectional-ribbed microchannel based on CFD and NSGA-II genetic algorithm. International Journal of Thermal Sciences, vol. 181, 107731, 2022. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107731

LIU, B., HE, S., MOULINEC, C., URIBE, J. Coupled porous media approaches in sub-channel CFD. Nuclear Engineering and Design, vol. 377, 111159, 2021. DOI: https://doi.org/10.1016/j.nucengdes.2021.111159

PYTHON. Disponível em: <https://www.python.org/>. Acesso em: 10 de abril de 2023.

SALOME. SALOME PLATFORM - The open-source platform for numerical simulation. Página inicial. Disponível em: <https://www.salome-platform.org/>. Acesso em: 17 de abril de 2023.

DAKOTA. Página principal. Disponível em: < https://dakota.sandia.gov/>. Acesso em: 23 de agosto de 2024.

LAI,Y.-J., LIU T.-Y., HWANG C.-L. TOPSIS for MODM. European Journal of Operational Research, vol. 76, pp. 486-500, 1994. DOI: https://doi.org/10.1016/0377-2217(94)90282-8

Downloads

Published

2025-05-28

How to Cite

Geometrical optimization of PWR spacer grids using GeN-Foam and Genetic Algorithms. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 12, n. 4B (Suppl.), p. e2704, 2025. DOI: 10.15392/2319-0612.2024.2704. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2704. Acesso em: 31 may. 2025.