Uma revisão crítica dos processos de translação em radioterapia pre-clínica associada às limitações na dosimetria de irradiadores biológicos conformacionais
DOI:
https://doi.org/10.15392/bjrs.v7i3.883Keywords:
Radioterapia pre-clínica, irradiação pequenos animais, SARRP, dosimetria campos pequenos kVAbstract
A radioterapia é reconhecida como uma das principais modalidades para o tratamento do câncer no mundo, a translação dos resultados das pesquisas pré-clínicas para ensaios clínicos representa uma otimização dos recursos destinados ao combate desta doença. O aperfeiçoamento nas limitações dosimétricas relacionadas ao desenvolvimento dos estudos de radiobiologia assim como uma correta divulgação dos resultados e descobertas podem nos permitir estreitar o gap entre a pesquisa pré-clínica e a clínica. Neste trabalho, apresentamos, através de uma revisão bibliográfica, as características das informações relatadas nos estudos pré-clínicos envolvendo radiações ionizantes e relações dose-resposta. Estas informações são correlacionadas com o impacto na aplicabilidade dos resultados dentro dos conceitos da radioterapia clínica. Apresentamos também a evolução das propostas dosimétricas para irradiadores biológicos conformacionais de pequenos animais, com feixes de fótons de dimensões de campo de radiação milimétricos e energias de até 225 kVp, principalmente para o sistema SARRP (Small animal radiation research platform). As propostas para dosimetria de referência e relativa para campos pequenos, próximos aos 5mm de diâmetro, são atualmente escassas para a referida faixa energética. Este trabalho tem como ojetivo evidenciar a necessidade de novas propostas dosimétricas neste campo de estudo com o mesmo rigor metrológico requerido na radioterapia clínica.
Downloads
References
WHO-World Health Organization. World Health Statistics 2017: Monitoring health for the Sustainable Development Goals SDGs. World Health Organization, 2017.
FREEDMAN, L. P.; COCKBURN, I. M.; SIMCOE, T. S. The Economics of Reproducibility in Preclínical Research. PLOS Biol., vol. 13, no. 6, p. e1002165, Jun. 2015.
HACKAM, D. G.; REDELMEIER, D. A. Translation of Research Evidence From Animals to Humans. JAMA, vol. 296, no. 14, pp. 1727–1732, Oct. 2006.
BUTTERWORTH, K. T.; PRISE, K. M.; VERHAEGEN, F. Small animal image-guided radiotherapy: status, considerations and potential for translational impact. Br. J. Radiol., vol. 88, no. 1045, p. 20140634, Jan. 2015.
DESROSIERS, M.; DEWERD, L.; DEYE, J.; LINDSAY, P.; MURPHY, M. K.; MITCH, M.; MACCHIARINI, F.; STOJADINOVIC, S.; STONE, H. The Importance of Dosimetry Standardization in Radiobiology. J. Res. Natl. Inst. Stand. Technol., vol. 118, pp. 403–418, 2013.
GHITA, M.; MCMAHON, S. J.; THOMPSON, H. F.; MCGARRY, C. K.; KING, R.; OSMAN, O. S. O.; KANE, J. L.; TULK, A.; SCHETTINO, G.; BUTTERWORTH, K. T.; HOUNSELL, A. R.; PRISE, K. M. Small field dosimetry for the small animal radiotherapy research platform (SARRP), Radiat. Oncol., vol. 12, no. 1, pp. 1–10, 2017.
PEDERSEN, K. H.; KUNUGI, K. A.; HAMMER, C. G.; CULBERSON, W. S.; DEWERD, L. A. Radiation Biology Irradiator Dose Verification Survey, Radiat. Res., vol. 185, no. 2, pp. 163–168, 2016.
ICRU - International Commission on Radiation Units and Measurements. ICRU Report 91: Prescribing, Recording, and Reporting of Stereotactic Treatments with Small Photon Beams. J. Int. Comm. Radiat. Units Meas., vol. 14, no. 2, pp. 1–160, Jul. 2017.
BENEDICT, S. H.; SCHLESINGER, D. J.; GOETSCH, S. J. Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy, 2014. [Online] Available:http://www.hopkinsmedicine.org/radiation_oncology/treatments/stereotactic_radiosurgery_body_radiation_therapy.html. [Accessed: 14-Sep-2018].
ICRU-International Commission on Radiation Units and Measurements. ICRU Report 24: Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy. J. Int. Comm. Radiat. Units Meas., vol. os13, no. 1, p. NP-NP, Sep. 1976.
ICRU-International Commission on Radiation Units and Measurements. ICRU Report 62: Prescribing, Recording and Reporting Photon Beam Therapy. J. Int. Comm. Radiat. Units Meas., vol. os32, no. 1, p. NP-NP, Nov. 1999.
NUNN, A. A.; DAVIS, S. D.; MICKA, J. A.; DEWERD, L. A. LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to C60o. Med. Phys., vol. 35, no. 5, pp. 1859–1869, Apr. 2008.
DOS SANTOS, M.; PAGET, V.; BEN KACEM, M.; TROMPIER, F.; BENADJAOUD M. A.; FRANÇOIS A.; GUIPAUD O.; BENDERITTER M.; MILLIAT F. Importance of dosimetry protocol for cell irradiation on a low X-rays facility and consequences for the biological response. Int. J. Radiat. Biol., vol. 94, no. 6, pp. 597–606, Apr. 2018.
MASTERSON, M. E.; FEBO, R. Pretransfusion blood irradiation: Clínical rationale and dosimetric considerations. Med. Phys., vol. 19, no. 3, pp. 649–657, May 1992.
GRANTON, P.V.; PODESTA, M.; LANDRY, G.; NIJSTEN, S.; BOOTSMA, G.; VERHAEGEN, F. A combined dose calculation and verification method for a small animal precision irradiator based on onboard imaging. Med. Phys., vol. 39, no. 7Part1, pp. 4155–4166, Jun. 2012.
JEONG, J.; CHEN, Q.; FEBO, R.; YANG, J.; PHAM, H.; XIONG, J. P.; ZANZONICO, P. B.; DEASY, J. O.; HUMM, J. L.; MAGERAS, G. S. Adaptation, Commissioning, and Evaluation of a 3D Treatment Planning System for High-Resolution Small-Animal Irradiation. Technol. Cancer Res. Treat., vol. 15, no. 3, pp. 460–471, 2015.
MA, C.-M.; COFFEY, C. W.; DEWERD, L. A.; LIU, C.; NATH, R.; SELTZER, S. M.; SEUNTJENS J. P. AAPM TG61: Protocol for 40-300 kV x-ray beam dosimetry in radiotherapy and radiobiology. 2001.
ALMOND, P. R.; BIGGS, P. J.; HANSON, W. F. AAPM TG51: Protocol for Clínical Reference Dosimetry of High-Energy Photon and Electron Beams. Med. Phys., vol. 26, no. 1999, pp. 1–9, 1999.
IAEA- International Atomic Energy Agency. Technical Reports Series TRS 398: Absorbed Dose Determination in External Beam Radiotherapy. At. Energy Agency, pp. 1–229, 2000.
IAEA-International Atomic Energy Agency. Technical Reports Series TRS 483: Dosimetry of Small Static Fields Used in External Beam Radiotherapy An International Code of Practice for Reference and Relative Dose Determination. 1st ed. Viena: IAEA, 2017.
VERHAEGEN, F.; DUBOIS, L.; GIANOLINI, S.; HILL, M. A.; KARGER, C. P.; LAUBER, K.; PRISE, K. M.; SARRUT, D.; THORWARTH, D.; VANHOVE, C.; VOJNOVIC, B; WEERSINK, R.; WILKENS, J. J.; GEORG, D. ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiother. Oncol., vol. 126, no. 3, pp. 471–478, 2018.
LINDSAY, P. E.; GRANTON, P. V.; GASPARINI, A.; JELVEH, S.; CLARKSON, R.; VAN HOOF, S.; HERMANS, J.; KAAS, J.; WITTKAMPER, F.; SONKE, J.J.; VERHAEGEN, F.; JAFFRAY, D.A. Multi-institutional Dosimetric and geometric commissioning of image-guided small animal irradiators. Med. Phys., vol. 41, no. 3, 2014.
NIROOMAND-RAD A.; BLACKWELL C.R.; COURSEY B. M.; GALL K. P.; GALVIN J. M.; MCLAUGHLIN W. L.; MEIGOONI A.S.; NATH R.; RODGERS J.E.; SOARES C.G. Radiochromic Film Dosimetry. Am. Assoc. Phys. Med. AAPM No.63, vol. 25, no. 11, 1998.
TRYGGESTAD, E.; ARMOUR, M.; IORDACHITA, I.; VERHAEGEN, F.; WONG, J. W. A comprehensive system for dosimetric commissioning and Monte Carlo validation for the small animal radiation research platform. Phys. Med. Biol., vol. 54, no. 17, pp. 5341–57, Sep. 2009.
WONG, J.; ARMOUR, E.; KAZANZIDES, P.; IORDACHITA, I.; TRYGGESTAD, E.; DENG, H.; MATINFAR, M; KENNEDY, C.; LIU, Z.; CHAN, T.; GRAY, O.; VERHAEGEN, F.; MCNUTT, T.; FORD, E.; DEWEESE, T. L. High-resolution, small animal radiation research platform with x-ray tomographic guidance capabilities. Int. J. Radiat. Oncol. Biol. Phys., vol. 71, no. 5, pp. 1591–9, Aug. 2008.
PIDIKITI, R.; STOJADINOVIC, S.; SPEISER, M.; SONG, H. K.; HAGER, F.; SOL-BERG, T. D. Dosimetric characterization of an image-guided stereotactic small animal irradiator. Phys. Med. Biol., vol. Volume 56, no. Number 8, pp. 2585–2599, 2011.
NEWTON, J.; OLDHAM, M.; THOMAS, A.; LI, Y.; ADAMOVICS, J.; KIRSCH, D. G.; DAS, S. Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques. Med. Phys., vol. 38, no. 12, pp. 6754–62, Dec. 2011.
JOHNSTONE, C. D.; THERRIAULT-PROULX, F.; BEAULIEU, L.; BAZALOVA-CARTER, M. Characterization of a Plastic Scintillating Detector for the Small Animal Radiation Research Platform (SARRP). Med. Phys., pp. 394–404, 2018.
HILL, R.; HEALY, B.; HOLLOWAY, L.; KUNCIC, Z.; THWAITES, D.; BALDOCK, C. Advances in kilovoltage x-ray beam dosimetry. Phys. Med. Biol., vol. 59, no. 6, pp. 183–231, 2014.
DAMODAR J.; ODGERS D.; POPE D.; HILL R. A study on the suitability of the PTW microDiamond detector for kilovoltage x-ray beam dosimetry. Appl. Radiat. Isot., vol. 135, pp. 104–109, 2018.
NA Y. H.; WANG Y.-F. ; BLACK P. J.; VELTEN C.; QIAN X. ; LIN S.-C. ; ADAMOVICS J.; WUU C.-S. Dosimetric and geometric characteristics of a small animal image-guided irradiator using 3D dosimetry/optical CT scanner. Med. Phys., vol. 45, no. 7, pp. 3330–3339, Jul. 2018.
LOW D. A.; HARMS W. B.; MUTIC S.; PURDY J. A. A technique for the quantitative evaluation of dose distributions. Med. Phys., vol. 25, no. 5, pp. 656–661, May 1998.
BUTSON M. J.; CHEUNG T.; YU P. K. N. Radiochromic film dosimetry in water phantoms. Phys. Med. Biol., vol. 46, no. 1, pp. N27–N31, Jan. 2001.
Published
Issue
Section
License
Copyright (c) 2019 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/