Structural and Morphological Characterization of the Chromium-doped β-Spodumene to Ceramic Pigment
DOI:
https://doi.org/10.15392/bjrs.v10i2A.1772Keywords:
β-spodumene, ceramic pigment, proteic sol-gel methodAbstract
The structural and morphological properties of the novel chromium-doped β-spodumene based ceramic pigment were evaluated aiming to study its chemical and thermal stability in industrial applications. The pigment samples were synthesized by the proteic sol-gel method using gelatin as a ligand. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were performed. Rietveld refinement of experimental diffractograms and average crystallites size by the Scherrer’s method analysis were carried out. XRD results confirmed that the crystal structure of lattice corresponded to β-spodumene and the Rietveld refinement indicated the absence of structural changes with doping up to 3% of chromium. Scherrer’s method indicates that there are no trends changes in the average size of crystallites in the analyzed doping contents. SEM analysis indicated that there are no morphological changes in the chromium-doped particles. The present study concluded that structural or morphological alterations are not noticed for β-spodumene samples produced with chromium doping up to 3% by weight, and that this pigment possibly preserves the chemical and thermal stability of pure β-spodumene. The absence of changes in these properties by doping with low chromium contents were attributed to possible substitutions of Al3+ by Cr3+ ions in the β-spodumene crystal lattice.
Downloads
References
BARBOSA, L. I.; VALENTE, G.; OROSCO, R. P.; GONZÁLEZ, J. A. Lithium extraction from β spodumene through chlorination with chlorine gas. Minerals Engineering, v. 56,
p. 29-34, 2014.
DESSEMOND, C; LAJOIE-LEROUX, F.; SOUCY, G.; LAROCHE, N.; MAGNAN, J. Spodumene: The Lithium Market, Resources and Processes. Minerals, v. 9(6), p. 334, 2019.
KUANG, G.; LIU, Y.; LI, H.; XING, S.; LI, F.; GUO, H.; Extraction of lithium from β-spodumene using sodium sulfate solution. Hydrometallurgy, v. 177, p. 49-56, 2018.
XING, P.; WANG, C.; MA, L. Z. B.; WANG, L.; CHEN, Y.; YANG, C. Lithium Extraction and Hydroxysodalite Zeolite Synthesis by Hydrothermal Conversion of α‑Spodumene. ACS Sustainable Chem Eng, v. 7, p. 9498-9505, 2019.
ROSALES, G. D.; RUIZ, M. C.; RODRIGUEZ, M. H. Novel process for the extraction of lithium from β-spodumene by leaching with HF. Hydrometallurgy, v. 147-148, p. 1-6, 2014.
d’AMORIM, R. A. P. O.; TEIXEIRA, M. I.; SOUZA, S. O.; SASAKI, J. M.; CALDAS, L. V. E. Influence of Teflon® agglutinator on TLD spodumene pellets. Journal of Luminescence, v. 132, p. 266-269, 2012.
d’AMORIM, R. A. P. O.; VASCONCELOS, D. A. A.; BARROS, V. S. M.; KHOURY, H. J.; SOUZA, S. O. Characterization of α-spodumene to OSL dosimetry. Radiation Physics and Chemistry, v. 95, p. 141-144, 2014.
FERRAZ, G. M.; PAIÃO, J. R. B.; WATANABE, S.; SOUZA, S. O. Synthetic spodumene polycrystals as a TL dosimetric material. Radiation Measurements, v. 43, p. 387-391, 2008.
LIMA, L. L.; OLIVEIRA, R. A. P.; LIMA, H. R. B. R.; SANTOS, H. N.; SANTOS, J. O.; LIMA, A. F.; SOUZA, S. O. Thermoluminescent properties studies of spodumene lilac sample to dosimetric applications. Journal of Physics Conference Series, v. 249(1), p. 012013, 2010.
LIMA, H. R. B. R.; NASCIMENTO, D. S.; BISPO, G. F. C.; TEIXEIRA, V. C.; VALÉRIO, M. E. G.; SOUZA, S. O. Production and characterization of spodumene dosimetric pellets prepared by a sol–gel route. Radiation Physics and Chemistry, v. 104, p. 93-99, 2014.
FERRAZ, R. F.; SOUSA, J. F.; COSTA, D. S.; OLIVEIRA, R. A. P.; LIMA, H. R. B. R. Development of a β-LiAlSi2O6:Cr-based Ceramic Pigment by Proteic Sol-Gel Process Using Gelatin: Synthesis and Characterization. Materials Research, v. 25(1), p. 12, 2022.
BUXBAUM, G.; PFFAF, G. Industrial Inorganic Pigments, 3rd ed. Weinhein: WILEY-VCH Verlag GmbH & Co KGaA, 2005.
MASLENNIKOVA, G. N.; PISHCH, I. V.; RADION, E. V. Current Classification of Ceramic Silicate Pigments (Review). Glass and Ceramics, v. 63, p. 281-284, 2006.
ZHANG. A.; MU, B.; WANG, X.; WEN, L.; WANG, A. Formation and Coloring Mechanism of Typical Aluminosilicate Clay Minerals for CoAl2O4 Hybrid Pigment Preparation. Frontiers in Chemistry, v. 6, p. 125, 2018.
GONG, L.; LIANG, J.; KONG, L.; CHEN, B.; LI, Y.; TIAN, G. Synthesis of high-performance copper barium silicate composite pigment from waste iron ore tailings. Ceramics International, v. 47(19), p. 27987-27997, 2021.
KLEIN, L.; APARICIO, M.; JITIANU, A. Handbook of Sol-Gel Science and Technology, 2nd ed. New York: Springer, 2018.
NOGUEIRA, N. A. S.; UTUNI, V. H. S.; SILVA, Y. C.; KIYOHARA, P. K.; VASCONCELOS, I. F.; MIRANDA, M. A. R.; SASAKI, J. M. X-ray diffraction and Mossbauer studies on superparamagnetic nickel ferrite (NiFe2O4) obtained by the proteic sol-gel method. Materials Chemistry and Physics, v. 163, p. 402-406, 2015.
MENEZES, A. S.; REMÉDIOS, C. M. R.; SASAKI, J. M.; SILVA, L. R. D.; GOES, J. C.; JARDIM, P. M.; MIRANDA, M. A. R. Sintering of nanoparticles of α-Fe2O3 using gelatin. J Non-Cryst Solids, v. 353, p. 1091-1094, 2007.
SCHIRIEBER, G.; GAREIS, H. Gelatine Handbook: Theory and Industrial Pratice, 1st ed. Weinhein: WILEY-VCH Verlag GmbH & Co KGaA, 2007.
RIETVELD, H. M. A profile refinement method for nuclear and magnetic structures. J Appl Cryst, v. 2, p. 65-71, 1969.
BLEICHER, L.; SASAKI, J. M.; OLIVEIRA, C.; SANTOS, P. Development of a graphical interface of the Rietveld refinement program DBWS. J Appl Cryst, v. 33, p. 1189, 2000.
SCHERRER, P.; Abschätzungen von Charaktersummen, Einheit und Klassenzahlen. Göttinger Nachrichten Gesell, v. 2, p. 98, 1918.
CHI-TANG, L.; PEACOR, D. R.; The crystal structure of LiAlSi2O6-II (“β spodumene”). Z Kristallogr, v. 126, p. 46-65, 1968.
YOUNG, R. A. Introduction to the Rietveld method. In: YOUNG, R. A. The Rietveld Method, 1st ed. New York: Oxford University Press, 1993. p. 1-38.
DAVID, W. I. F.; Powder diffraction: least-squares and beyond. J Res Natl Inst Stand Technol, v. 109, p. 107-123, 2004.
BARBOSA, L. I.; VALENTE, G.; OROSCO, R. P.; GONZÁLEZ, J. A. Lithium extraction from β-spodumene through chlorination with chlorine gas. Miner Eng, v. 56, p. 29-34, 2014.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2022 Brazilian Journal of Radiation Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/