Study of CdTe detector response functions using different MCNPX computational modeling detailing
DOI:
https://doi.org/10.15392/2319-0612.2024.2497Keywords:
X-ray spectra, Response Function, CdTe detector, MCNPXAbstract
The spectra measured with cadmium telluride (CdTe) detectors show high spectral distortions that must be corrected by applying a mathematical algorithm along with the detector's response functions. Simplified computational modeling of the CdTe detector is generally used to obtain its response functions. In this work, the Monte Carlo code MCNPX was used to study the response functions of a CdTe detector using more complex detector modeling and compared it with those obtained by simplified modeling. Raw spectra were corrected using the response matrices obtained for the simplified and detailed modeling of the CdTe and compared with those obtained with reference-validated software.
Downloads
References
Kurková, D., Judas, L. X-ray tube spectra measurement and correction using a CdTe detector and an analytic response matrix for photon energies up to 160 keV. Radiat. Meas. v.85, p.64-72., 2016.
Miyajima, S., Imagawa, K., Matsumoto, M. CdZnTe detector in diagnostic x‐ray spectroscopy. Med. Phys. v.29, p.1421–1429, 2002.
Tomal, A., Santos, J.C., Costa, P., Gonzales, A.L., Poletti, M. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy. Appl. Radiat. Isot. v.100, p.32-37, 2015.
Knoll, G.F. Radiation detection and measurement. Hoboken, NJ: John Wiley & Sons, 2010.
Bonifácio, D.A.B. Validação do Geant4 para a produção e detecção de raios X na faixa de energia de radiodiagnóstico. Dissertação (Mestrado em Física) – Universidade de São Paulo, São Paulo, 2007.
Di Castro, E., Pani, R., Pellegrini, R., Bacci, C. The use of cadmium telluride detectors for the qualitative analysis of diagnostic x-ray spectra. Phys. Med. Biol. v.29, 1117, 1984.
Kurková, D., Judas, L. An analytical X-ray CdTe detector response matrix for incomplete charge collection correction for photon energies up to 300 keV. Radiat. Phys. Chem. v.146, p.26-33, 2018.
LeClair, R.J., Wang, Y., Zhao, P., Boileau, M., Wang, L., Fleurot, F. An analytic model for the response of a CZT detector in diagnostic energy dispersive x‐ray spectroscopy. Med. Phys. v.33, p.1329-1337, 2006.
Redus, R.H., Pantazis, J.A., Pantazis, T.J., Huber, A.C., Cross, B.J. Characterization of CdTe detectors for quantitative X-ray spectroscopy. IEEE Trans. Nucl. Sci. v.56, p.2524-2532, 2009.
Tomal, A., Cunha, D., Antoniassi, M., Poletti, M. Response functions of Si (Li), SDD and CdTe detectors for mammographic x-ray spectroscopy. Appl. Radiat. Isot. v.70, p.1355-1359, 2012.
Seelentag, W., Panzer, W., Drexler, G., Platz, L., Santner, F. A catalogue of spectra for the calibration of dosemeters. Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Neuherberg (Germany, F.R.). Inst. fuer Strahlenschutz, 1979.
Almeida Jr, A. Caracterização de argamassas de barita como blindagens contra a radiação X e determinação experimental dos coeficientes de atenuação desses materiais, Tese (Doutorado em Engenharia de Materiais) – Universidade Federal de Ouro Preto, Ouro Preto, 2014.
Pelowitz, D.B. MCNPXTM User’s Manual, Version 2.7. 0. LA-CP-11-00438. Los Alamos Natl. Lab, United States of America, 2011.
White, M.C. Photoatomic data library MCPLIB03: An update to MCPLIB02 containing Compton profiles for Doppler broadening of incoherent scatteringIntern. Memo. X-5 MCW-02-110 -UR-03-0787, Los Alamos Natl. Lab. United States of America, 2002.
Adams, K. Electron upgrade for MCNP4B. Intern. Memo. X-5-RN U-00-14 May 25, Los Alamos Natl. Lab., United States of America, 2000.
X-5 Monte Carlo Team. MCNP - A General Monte Carlo N-Particle Transport Code, Version 5. LA-UR-03-1987, Los Alamos Natl. Lab., United States of America, 2008.
Stankovic, J., Marinkovic, P., Ciraj-Bjelac, O., Kaljevic, J., Arandjic, D., Lazarevic, D. Toward utilization of MCNP5 particle track output file for simulation problems in photon spectrometry. Comput. Phys. Commun. v.195, p.77-83, 2015.
Santos, J.C., Tomal, A., Furquim, T.A., Fausto, A.M., Nogueira, M.S., Costa, P.R. Direct measurement of clinical mammographic x‐ray spectra using a CdTe spectrometer. Med. Phys. v.44, p.3504-3511, 2017.
Mendes, B.M., Squair, P.L., Figueiredo, M.T.T., Nogueira, M.S., 2018. Development of a methodology for CdTe detector spectra correction using MCNPx simulations, in: 14th International Symposium on Radiation Physics. Presented at the ISRP-14. 14th International Symposium on Radiation Physics, Córdoba.
R. Kunzel, Herdade, S.B., Terini, R.A., Costa, P.R. X-ray spectroscopy in mammography with a silicon PIN photodiode with application to the measurement of tube voltage. Med. Phys. v.31, p.2996-3003, 2004.
Berger, M., Hubbell, J., Seltzer, S., Chang, J., Coursey, J., Sukumar, R., Zucker, D., Olsen, K., 2010. XCOM: photon cross section database (version 1.5),[Online] Available: http://physics. nist. gov/xcom, National Institute of Standards and Technology, Gaithersburg. Gaithersburg MD.
Published
Issue
Section
License
Copyright (c) 2024 Brazilian Journal of Radiation Sciences

This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/