Evaluation of Public Exposure to Gamma Radiation in Cotonou, Southern Benin

Authors

DOI:

https://doi.org/10.15392/2319-0612.2025.2972

Keywords:

gamma radiation, georeferenced measurement, ambient dose equivalent rate, public radiation protection

Abstract

The objective of this study is to assess public exposure to natural background gamma radiation in Cotonou, southern Benin, in West Africa. This is a cross-sectional study with both descriptive and analytical aims, conducted from July to December 2024. The methodology involved continuous, georeferenced measurement of the ambient gamma dose rate at a height of one meter (1 m) above ground level using a spectrometer. The study sites included city streets and selected markets, including Dantokpa, an open-air market, and eight indoor markets. A total of 341,991 data points were recorded along the streets and 16,202 were recorded within the markets. The ambient gamma dose equivalent rate along the streets ranged from 4.67 to 136.84 nSv·h– 1, with an average of 25.11 ± 12.72 nSv·h– 1. The highest average rate was observed in District 5, which hosts a cement manufacturing plant. The average dose rates were 23.71 ± 12.90 nSv·h– 1 at the Dantokpa market and 69.72 ± 21.96 nSv·h– 1 in the indoor markets. In the latter, the dose rates were higher than those recorded in their respective districts. The estimated external annual effective doses were 0.04 ± 0.02 mSv for streets, 0.10 ± 0.06 mSv for Dantokpa, and 0.30 ± 0.09 mSv for indoor markets. These values remain below the worldwide average of 0.87 mSv, as recognized by the United Nations Scientific Committee on the Effects of Atomic Radiation for public exposure to natural radiation of terrestrial and cosmic origin. Overall, ambient gamma radiation exposure in Cotonou is low, though higher in enclosed market environments. These values may serve as baseline references for future studies in Cotonou and other African cities.

Downloads

Download data is not yet available.

References

[1] PODGORŠAK, E. B. Modes of radioactive decay. In: PODGORŠAK, E. B. (Ed). Radiation physics for medical physicists. 2nd ed. Cham: Springer, 2016. p. 475–522. https://doi.org/10.1007/978-3-319-25382-4_11. DOI: https://doi.org/10.1007/978-3-319-25382-4_11

[2] ASWAL, D. K. (Ed). Handbook on radiation environment, volume 1: sources, applications and policies. Singapore: Springer, 2024. https://doi.org/10.1007/978-981-97-2795-7. DOI: https://doi.org/10.1007/978-981-97-2795-7

[3] IAEA. The ALMERA Network. Available at: https://www.iaea.org/sites/default/files/19/02/almera-network.pdf. Accessed on: 24 Sep. 2025.

[4] NATIONAL ASSEMBLY OF BENIN. Law No. 2017-29 of March 15, 2018, on radiological safety and nuclear security in the Republic of Benin. Available at: www.ansr.gouv.bj. Acessed on: 10 Nov. 2024.

[5] ICRP. The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Annals of the ICRP, Oxford, v. 37, n. 2–4, p. 1–332, 2007. https://doi.org/10.1016/j.icrp.2007.10.003. DOI: https://doi.org/10.1016/j.icrp.2007.10.003

[6] TALAPKO, J.; TALAPKO, D.; KATALINIĆ, D.; KOTRIS, I.; ERIĆ, I.; BELIĆ, D.; MIHALJEVIĆ, V.; VASILJ, A.; ERIĆ, S.; FLAM, J.; BEKIĆ, S.; MATIĆ, S.; ŠKRLEC, I. Health effects of ionizing radiation on the human body. Medicina, Basel, v. 60, n. 4, p. 653, 2024. https://doi.org/10.3390/medicina60040653 . DOI: https://doi.org/10.3390/medicina60040653

[7] UNSCEAR. Sources and effects of ionizing radiation: UNSCEAR 2010 report to the General Assembly with scientific annexes. New York: United Nations, 2010. Available at: https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2010_Report.pdf.

[8] UNSCEAR. Sources, effects and risks of ionizing radiation: UNSCEAR 2020/2021 report to the General Assembly, with scientific annex C. New York: United Nations, 2022. Available at: https://www.unscear.org/unscear/en/publications/2020_2021_3.html.

[9] WHO. Ionizing radiation and health effects. Fact sheet. Available at: https://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-and-health-effects. Acessed on: 10 Nov. 2024.

[10] IAEA. Radiation, people and the environment. IAEA/PI/A.75/04-00391. Vienna: IAEA, 2004. Available at: https://www.iaea.org/sites/default/files/radiation0204.pdf.

[11] ZINSOU, M. B.; HOUESSOUVO, C. R.; RABESIRANANA, N.; ALLODJI, R. S.; MEDENOU, D.; DOSSOU, J.; DE SOUZA, E. M.; MENSAHE, G. A. Gamma radiation dose rate measurements in granite quarries and schools in two mountainous towns in Benin. Brazilian Journal of Radiation Sciences, São Paulo, v. 12, n. 4, p. e2517, 2024. https://doi.org/10.15392/2319-0612.2024.2517. DOI: https://doi.org/10.15392/2319-0612.2024.2517

[12] WORLD POPULATION REVIEW. Cotonou population in 2024. Available at: https://worldpopulationreview.com/cities/benin/cotonou. Acessed on: 30 Dec. 2024.

[13] ICRP. 1990 recommendations of the International Commission on Radiological Protection. Annals of the ICRP, Oxford, v. 21, n. 1–3, p. 1–201, 1991. https://doi.org/10.1016/0146-6453(91)90003-I. DOI: https://doi.org/10.1016/0146-6453(91)90066-P

[14] UNSCEAR. Sources and effects of ionizing radiation: UNSCEAR 2000 report to the General Assembly with scientific annexes. Volume I: Annex B. New York: United Nations, 2000. Available at: https://www.unscear.org/unscear/uploads/documents/publications/UNSCEAR_2000_Annex-B.pdf. Acessed on: 15 Jan 2025.

[15] KANIU, M. I.; DARBY, I. G.; ANGEYO, H. K. Assessment and mapping of the high background radiation anomaly associated with laterite utilization in the south coastal region of Kenya. Journal of African Earth Sciences, Amsterdam, v. 160, p. 103606, 2019. https://doi.org/10.1016/j.jafrearsci.2019.103606. DOI: https://doi.org/10.1016/j.jafrearsci.2019.103606

[16] SALAHEL DIN, K. Soil radioactivity levels and radiation exposure to the population in Aswan and Abu Simbel areas, south of Egypt. Physics and Chemistry of the Earth, Amsterdam, v. 127, p. 103179, 2022. https://doi.org/10.1016/j.pce.2022.103179. DOI: https://doi.org/10.1016/j.pce.2022.103179

[17] ADEOJO, I. O.; ADEBISI, W. A.; ADEOJO, T. T.; ADEWUMI, O. F.; BABALOLA, K. K.; AZEEZ, S. O. Radiation mapping of Osun State, southwestern Nigeria, measuring the status of radioactivity. Fountain Journal of Natural and Applied Sciences, Osogbo, v. 2, n. 2, p. 30–37, 2023. https://doi.org/10.53704/fujnas.v12i2.471. DOI: https://doi.org/10.53704/fujnas.v12i2.471

[18] YAMÉOGO, Z.; NABAYOOGO, D.; KABORÉ, O.; BANGOU, C.; ZEBO, I.; ZOUNGRANA, M. Measurements of natural radioactivity and exposure rates in soil samples from Ouagadougou, Burkina Faso. Journal of Materials and Environmental Science, Kenitra, v. 13, n. 1, p. 129–138, 2022.

[19] ATEBA, J. F. B.; ATEBA, P. O.; BEN-BOLIE, G. H.; ABIAMA, P. E.; ABEGA, C. E.; MVONDO, S. Natural background dose measurements in South Cameroon. Radiation Protection Dosimetry, Oxford, v. 140, n. 1, p. 81–88, 2010. https://doi.org/10.1093/rpd/ncq035. DOI: https://doi.org/10.1093/rpd/ncq035

[20] HAZOU, E.; SHOOUOP, C. J. G.; MEKONGTSO, E. J. N.; MOYO, M. N.; ATEBA, J. F. B.; TCHAKPELE, P. K. Preliminary assessment of natural radioactivity and associated radiation hazards in a phosphate mining site in southern area of Togo. Radiation Detection Technology and Methods, Singapore, v. 3, n. 16, p. 1–10, 2019. https://doi.org/10.1007/s41605-018-0091-x. DOI: https://doi.org/10.1007/s41605-018-0091-x

[21] NABAYOOGO, D.; OLIVEIRA, J. M.; CARVALHO, F. P. Environmental radioactivity in gold mining in Burkina Faso and potential recycling of mining waste rocks. International Journal of Environmental Studies, Abingdon, v. 79, n. 6, p. 1067–1077, 2021. https://doi.org/10.1080/00207233.2021.1978695. DOI: https://doi.org/10.1080/00207233.2021.1978695

[22] DARKO, E. O.; FAANU, A.; AWUDU, A. R.; EMI-REYNOLDS, G.; YEBOAH, J.; OPPON, O. C.; AKAHO, E. K. H. Public exposure to hazards associated with natural radioactivity in open-pit mining in Ghana. Radiation Protection Dosimetry, Oxford, v. 138, n. 1, p. 45–51, 2010. https://doi.org/10.1093/rpd/ncp181. DOI: https://doi.org/10.1093/rpd/ncp181

[23] FAANU, A.; ADUKPO, O. K.; TETTEY-LARBI, L.; LAWLUVI, H.; KPEGLO, D. O.; DARKO, E. O.; EMI-REYNOLDS, G.; AWUDU, R. A.; KANSAANA, C.; AMOAH, P. A.; EFA, A. O.; IBRAHIM, A. D.; AGYEMAN, B.; KPODZRO, R.; AGYEMAN, L. Radiological landscape of natural resources and mining: unveiling the environmental impact of naturally occurring radioactive materials in Ghana's mining areas. Heliyon, Amsterdam, v. 10, n. 13, e24959, 2024. https://doi.org/10.1016/j.heliyon.2024.e24959. DOI: https://doi.org/10.1016/j.heliyon.2024.e24959

[24] ABBA, H. T.; SALEH, M. A.; HASSAN, W. M. S. W.; ALIYU, A. S.; RAMLI, A. T. Mapping of natural gamma radiation (NGR) dose rate distribution in tin mining areas of Jos Plateau, Nigeria. Environmental Earth Sciences, Berlin, v. 76, 208, 2017. https://doi.org/10.1007/s12665-017-6534-8. DOI: https://doi.org/10.1007/s12665-017-6534-8

[25] MBONU, C. C.; BEN, C. U. Assessment of radiation hazard indices due to natural radioactivity in soil samples from Orlu, Imo State, Nigeria. Heliyon, Amsterdam, v. 7, e07812, 2021. https://doi.org/10.1016/j.heliyon.2021.e07812. DOI: https://doi.org/10.1016/j.heliyon.2021.e07812

[26] BANGOU, C.; YAMÉOGO, Z.; HIE, K.; NITIEMA, E.; ZERBO, I.; ZOUNGRANA, M. Assessment of natural radioactivity and radiological hazards in soil, sorghum, and water in Villy at the West Central Region of Burkina Faso. Applied and Environmental Soil Science, Cairo, v. 2024, p. 1–10, 2024. https://doi.org/10.1155/2024/2002878. DOI: https://doi.org/10.1155/2024/2002878

[27] JOEL, E. S.; MAXWELL, O.; ADEWOYIN, O. O.; OLAWOLE, O. C.; ARIJAJE, T. E.; EMBON, Z.; SAEED, M. A. Investigation of natural environmental radioactivity concentration in soil of coastaline area of Ado-Odo/Ota Nigeria and its radiological implications. Scientific Reports, London, v. 9, 4219, 2019. https://doi.org/10.1038/s41598-019-40884-0. DOI: https://doi.org/10.1038/s41598-019-40884-0

[28] SAÏDOU; TOKONAMI, S.; HOSODA, M.; TCHUENTE SIAKA, Y. F.; NDJANA NKOULOU, J. E.; AKATA, N.; OUMAR, B. O.; PENAYE, J. Natural radiation exposure to the public in the uranium bearing region of Poli, Cameroon: from radioactivity measurements to external and inhalation dose assessment. Journal of Geochemical Exploration, Amsterdam, v. 205, 106350, 2019. https://doi.org/10.1016/j.gexplo.2019.106350. DOI: https://doi.org/10.1016/j.gexplo.2019.106350

[29] BRAMKI, A.; RAMDHANE, M.; BENRACHI, F. Natural radioelement concentrations in fertilizers and the soil of the Mila region of Algeria. Journal of Radiation Research and Applied Sciences, Amsterdam, v. 11, p. 49–55, 2018. https://doi.org/10.1016/j.jrras.2017.08.002. DOI: https://doi.org/10.1016/j.jrras.2017.08.002

[30] ABDALHAMID, S.; SALIH, I.; IDRISS, H. Gamma absorbed radiation dose in Marrah mountain series, western Sudan. Environmental Earth Sciences, Berlin, v. 76, 672, 2017. https://doi.org/10.1007/s12665-017-7009-7. DOI: https://doi.org/10.1007/s12665-017-7009-7

[31] FAANU, A.; ADUKPO, O. K.; TETTEY-LARBI, L.; LAWLUVI, H.; KPEGLO, D. O.; DARKO, E. O.; EMI-REYNOLDS, G.; AWUDU, R. A.; KANSAANA, C.; AMOAH, P. A.; EFA, A. O.; IBRAHIM, A. D.; AGYEMAN, B.; KPODZRO, R.; AGYEMAN, L. Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana. SpringerPlus, Berlin, v. 5, 98, 2016. https://doi.org/10.1186/s40064-016-1716-5 DOI: https://doi.org/10.1186/s40064-016-1716-5

[32] KALL, B.; DONNE, Z.; RASOLONIRINA, M.; RABESIRANANA, N. N.; RAMBOLAMANANA, G. Contribution à l’étude de la radioactivité gamma du sable des plages de Ramena et d’Orangea, Antsiranana, Madagascar. African Science, Cotonou, v. 10, n. 4, p. 23–35, 2014.

[33] UNSCEAR. Sources and effects of ionizing radiation: UNSCEAR 2008 report to the General Assembly with scientific annexes (tables 6 and 12). New York: United Nations, 2010. Available from: https://www.unscear.org/unscear/uploads/documents/unscear-reports/UNSCEAR_2008_Report_Vol.I-CORR.pdf

[34] IAEA. Protection du public contre l’exposition due au radon et autres sources naturelles de rayonnements dans un environnement intérieur. Safety Standards Series No. SSG-32. Vienna: IAEA, 2023. Available from: https://www-pub.iaea.org/MTCD/Publications/PDF/P1651F_web.pdf.

[35] ZINSOU, M. B.; RABESIRANANA, N.; MEDENOU, D.; RASOLONIRINA, M.; GBAGUIDI, B.; MENSAH, G. A. Assessment of natural radioactivity (⁴⁰K, ²³⁸U and ²³²Th) and radiological risk in building construction materials: the case of Benin hill granites. Brazilian Journal of Radiation Sciences, São Paulo, v. 12, n. 4, e2530, 2024. https://doi.org/10.15392/2319-0612.2024.2530. DOI: https://doi.org/10.15392/2319-0612.2024.2530

Downloads

Published

2025-12-19

Issue

Section

Original Articles