Aplicabilidade da Lei do Inverso do Quadrado da Dis-tância em radiologia convencional e mamografia

Authors

  • Nathan Willig Lima HCPA
  • Gabriela Hoff

DOI:

https://doi.org/10.15392/bjrs.v3i1A.91

Keywords:

radiology, mammography, dosimetry

Abstract

The Inverse Square Law (ISL) is a mathematical rule used to adjust the KERMA and exposure to different distances of focal spot having as reference a determined point in space. Taking into account the limitations of this  rule and its application, we have as main objective to verify the applicability of ISL to determine exposure on radiodiagnostic area (maximum tensions between 30kVp and 150kVp). Experimental data was collected, deterministic calculation and simulation using Monte Carlo Method (Geant4 toolkit) were applied to conventional radiology and mammography. The experimental data was collected using a calibrated ionizing chamber TNT 12000 from Fluke. The conventional X-ray equipment used was a Multix Top of Siemens, with Tungsten track and total filtration equivalent to 2.5 mm of aluminum; and the mammographic equipment was a Mammomat Inspiration from Siemens, presenting the track-add filtration combinations of Molybdenum-Molybdenum, Molybdenum-Rhodium, Tungsten-Rhodium. Both equipments have the Quality Control testes in agreement to Brazilian regulations. Based on the results it is possible conclude that the ISL presents lower performance in correct measurements on mammography spectra, i.e. the associated error (differences) achieves a value up to 77.8% and it can cause significant impact on both areas depending on the spectra energy and distance to correct.

Downloads

Download data is not yet available.

References

AAPM - American Association of Physicists in Medicine. Performance Specifications and Acceptance Testing for X-ray Generators and Automatic Exposure Control Devices. AAPM Report 14. AIP, 1:96, 1985.

AAPM - American Association of Physicists in Medicine. Protocols for the Radiation Safety Surveys of Diagnostic Radiological Equipment. AAPM Report 25. AAPM, 1989.

AAPM - American Association of Physicists in Medicine. Equipment Requirements and Quality Control for Mammography. AAPM Report 29. AAPM, 1990.

AGOSTINELLI, S. et al. GEANT 4 — a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, v 506, Issue 3, p.250-303. 2003.

ALLISON, J. et al. Geant4 Developments and Applications. IEEE Transactions on Nuclear Science, v. 53, n. 1. 2006.

ATTIX, F. H. Gamma- and X-ray interactions in matter. In: Attix, F. H. Introduction to radiological physicists and radiation dosimetry. 2.ed, John Wiley & Sons inc. p 124-159. 1986.

AUS, R.J.et al. A. Dependence of scatter on atomic number for x rays from tungsten and molybdenum anodes in the mammographic energy range.MedPhys, v.26, p.1306-1311. 1999.

ANVISA – Agência nacional de Vigilância Sanitária - Ministério da Saúde – Secretaria de Vigilância Sanitária. Diretrizes de Proteção Radiológica em Radiodiagnóstico Médica e Odontológic. ANVISA Portaria 453. p. 38. 1998.

CRANLEY K. et al. Catalogue of Diagnostic X-ray Spectra and Other Data. Report 78. The Institute of Physics and Engineering in Medicine. 1997.

DANCE, D.R. et al. Beast dosimetry using high-resolution voxel phantoms. Radiation Protection Dosimetry, v. 14, p. 359-363. 2005.

EUREF – European Reference Organisation for Quality Assured Breast Cancer Screening and Diagnostic Services. European protocol on dosimetry in mammography. EUR Report 16263. EN, Luxemburgo, p. 76. 1996.

GINGOLD, E. L.; WU, X.; BARNES, G. T. Contrast and dose with Mo-Mo, Mo-Rh, and Rh-Rh target-filter combinations in mammography. Radiology, v.195, p. 639-644. 1995.

HOFF, G. Cálculo da Dose em Glândula Mamária, Utilizando o Código de Transporte de Monte Carlo MCNP, para as Energias Utilizadas em Mamografia. 2005. Tese (Doutorado em Biociências Nucleares) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro. 2005.

HOFF, G. Efeito da filtração adicional de ródio e de molibdênio no contraste da imagem e dose glandular em mamografia. 2000. Dissertação (Mestrado em Biociências Nucleares) – Universidade do Estado do Rio de Janeiro, Rio de Janeiro. 2000.

ICRU - International Commission on Radiation Units and Measurements. Tissue substitutes in Radiation Dosimetry and Measurement. ICRU Report 44, Maryland: ICRU. p. 189. 1989.

KRAMER, R. et al. All about FAX: a Female Adult voXel phantom for Monte Carlo calculation in radiation protection dosimetry. Phys. Med. Biol, v. 49, p. 5203–5216. 2004.

NG, K.P.; TANG, F. H. Monte Carlo simulation of x ray spectra in mammography. Phys. Med. Biol, v. 45, p. 1309-1318. 2000.

NIST - National Institute of Standard and Technology – Physical Reference Data. Available at: <http://physics.nist.gov/PhysRefData/contents.html /> Last accessed: 20. Aug, 2014.

TAKAHASHI, M.; KINASE, S.; R. KRAMER. Evaluation of counting efficiencies of awhole-body counter using monte carlo simulation with voxel phantoms. Radiation Protection Dosimetry advance access, v. 144, p. 1–4. 2011.

WU, X. et al. Normalized average glandular dose in molybdenum target-rhodium filter and Rhodium target-Rhodium filter mammography. Med. Phys., v.193, n.3, p. 83-89. 1994.

WU, X.; BARNES, G. T.; TUCKER, D. M. Spectral dependence of glandular tissue dose in screen-film mammography. Radiology, v. 179, p. 143-148. 1991.

ZANKL, M. et al. Organ dose conversion coefficients for external photon irradiation of male and female voxel models. Phys. Med. Biol, v. 47, p. 2367–2385. 2002.

Published

2015-05-21

How to Cite

Lima, N. W., & Hoff, G. (2015). Aplicabilidade da Lei do Inverso do Quadrado da Dis-tância em radiologia convencional e mamografia. Brazilian Journal of Radiation Sciences, 3(1A (Suppl.). https://doi.org/10.15392/bjrs.v3i1A.91

Similar Articles

You may also start an advanced similarity search for this article.