A simple method to back-project isocenter dose of radiotherapy treatments using EPID transit dosimetry
DOI:
https://doi.org/10.15392/bjrs.v5i3.319Keywords:
EPID, portal dosimetry, transit dosimetry, radiotherapyAbstract
The aim of this work was to implement a simple algorithm to evaluate isocenter dose in a phantom using the back-projected transmitted dose acquired using an Electronic Portal Imaging Device (EPID) available in a Varian Trilogy accelerator with two nominal 6 and 10 MV photon beams. This algorithm was developed in MATLAB language, to calibrate EPID measured dose in absolute dose, using a deconvolution process, and to incorporate all scattering and attenuation contributions due to photon interactions with phantom. Modeling process was simplified by using empirical curve adjustments to describe the contribution of scattering and attenuation effects. The implemented algorithm and method were validated employing 19 patient treatment plans with 104 clinical irradiation fields projected on the phantom used. Results for EPID absolute dose calibration by deconvolution have showed percent deviations lower than 1%. Final method validation presented average percent deviations between isocenter doses calculated by back-projection and isocenter doses determined with ionization chamber of 1,86% (SD of 1,00%) and -0,94% (SD of 0,61%) for 6 and 10 MV, respectively. Normalized field by field analysis showed deviations smaller than 2% for 89% of all data for 6 MV beams and 94% for 10 MV beams. It was concluded that the proposed algorithm possesses sufficient accuracy to be used for in vivo dosimetry, being sensitive to detect dose delivery errors bigger than 3-4% for conformal and intensity modulated radiation therapy techniques.
Downloads
References
Klein EE, Hanley J, Bayouth J, Yin F, Simon W, Dresser S, et al. Task Group 142 report: Quality assurance of medical accelerators. Medical Physics, 2009, 36(9), 4197-4212. doi: 10.1118/1.3190392
World Health Organization. Risk Profile. WHO Press, 2008, Geneve.
International Atomic Energy Agency. IAEA Human Health Reports No. 8: Development of procedures for in vivo dosimetry in radiotherapy. IAEA, 2013, Vienna.
Esch AV, Depuydt T, Huyskens DP. The use of an aSi-based EPID for routine absolute dosimetric pre-treatment verification of dynamic IMRT fields. Radiotherapy and Oncology, 2004, 71(2), 223-234. doi:10.1016/j.radonc.2004.02.018
Greer PB, Popescu CC. Dosimetric properties of an amorphous silicon electronic portal imaging device for verification of dynamic intensity modulated radiation therapy. Medical Physics, 2003, 30(7), 1618-1627. doi:10.1118/1.1582469
Ban L, Chin L, Wronski M, Weiser K, Turner A. Evaluating the Impact of In Vivo EPID Dosimetry on Intensity-Modulated Radiation Therapy Treatment Delivery Workflow: A Stakeholder Perspective. Journal of Medical Imaging and Radiation Sciences, 2014, 45(3), 253-259. doi:10.1016/j.jmir.2013.12.008
Wendling M, Louwe RJ, Mcdermott LN, Sonke J, Herk MV, Mijnheer BJ. Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. Medical Physics, 2006, 33(2), 259-273. doi:10.1118/1.2147744
Mans A, Wendling M, Mcdermott LN, Sonke J, Tielenburg R, Vijlbrief R, et al. Catching errors with in vivo EPID dosimetry. Medical Physics, 2010, 37(6), 2638-2644. doi:10.1118/1.3397807
Elmpt WV, Mcdermott L, Nijsten S, Wendling M, Lambin P, Mijnheer B. A literature review of electronic portal imaging for radiotherapy dosimetry. Radiotherapy and Oncology, 2008, 88(3), 289-309. doi:10.1016/j.radonc.2008.07.008
Dahlgren CV, Ahnesj A, Montelius A, Rikner G. Portal dose image verification: formalism and application of the collapsed cone superposition method. Physics in Medicine and Biology, 2002, 47(24), 4371-4387. doi:10.1088/0031-9155/47/24/305
Spezi E, Lewis DG. Full forward Monte Carlo calculation of portal dose from MLC collimated treatment beams. Physics in Medicine and Biology, 2004, 49(2), 355-355. doi:10.1088/0031-9155/49/2/c01
Piermattei A, Cilla S, Azario L, Greco F, Russo M, Grusio M, et al. ASi EPIDs for the in-vivo dosimetry of static and dynamic beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 796, 93-95. doi:10.1016/j.nima.2015.02.024
Putha S, Saxena P, Banerjee S, Srinivas C, Vadhiraja B, Ravichandran R, et al. On-line estimations of delivered radiation doses in three-dimensional conformal radiotherapy treatments of carcinoma uterine cervix patients in linear accelerator. Journal of Medical Physics, 2016, 41(4), 224. doi:10.4103/0971-6203.195186
Mijnheer B, Olaciregui-Ruiz I, Rozendaal R, Sonke J, Spreeuw H, Tielenburg R, et al. 3D EPID-based in vivo dosimetry for IMRT and VMAT. Journal of Physics: Conference Series, 2013, 444, 012011. doi:10.1088/1742-6596/444/1/012011
Celi S, Costa E, Wessels C, Mazal A, Fourquet A, Francois P. EPID based in vivo dosimetry system: clinical experience and results. Journal of Applied Clinical Medical Physics, 2016, 17(3), 262-276. doi:10.1120/jacmp.v17i3.6070
International Atomic Energy Agency. Technical Report Series No. 398. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water. IAEA, 2000, Vienna.
Downloads
Published
Issue
Section
License
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/