Estudo dos principais indicadores edafológicos da transferência solo-planta para o iodo
DOI:
https://doi.org/10.15392/bjrs.v6i3.795Keywords:
matéria orgânica, iodo, pHAbstract
Os modelos radioecológicos computacionais utilizados para fins de segurança ambiental, dependem de valores de parâmetros nem sempre disponíveis com a especificidade ambiental requerida. Dentro do cenário agrícola, o fator de transferência solo-planta (Fv) é uma informação crucial para a avaliação do risco radiológico, devido à ingestão de alimentos. A transferência solo-planta está diretamente relacionada com a fenologia e fisiologia das plantas, propriedade dos solos e propriedades físico-química dos radionuclídeos. Este trabalho teve por objetivo identificar, através da revisão sistemática da literatura, as propriedades dos solos que afetam os valores de Fv para o iodo; e a partir dessas, propor indicadores edafológicos potencialmente capazes de prever valores de Fv através do uso de ferramentas de inteligência artificial. A análise da literatura permitiu selecionar o teor de matéria orgânica e o pH dos solos como potenciais indicadores edafológicos de valores de Fv. Apesar do número considerável de artigos publicados sobre o tema, foram levantados e estruturados em um banco de dados, somente 135 valores de Fv para o iodo, que puderam ser associados à pelo menos uma propriedade do solo. Desse banco de dados, somente 2 “learning sets” puderam ser estruturados para a o treinamento de uma rede neural artificial; e somente para o 125I: uma para trigo (n=38) e outra para alface (n=14). Esse resultado aponta que os registros de valores Fv para o iodo, não reportam as informações ambientais adequadas para a análise desse parâmetro, sendo que a maioria das informações foram restritas a solos de clima temperado.
Downloads
References
REFERÊNCIAS
Bell, J.N. and G. Shaw, Ecological lessons from the Chernobyl accident. Environment international, 2005. 31(6): p. 771-7.
IAEA, Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments, in TRS-472. 2010, International Atomic Energy Agency: Vienna. p. 208.
Frissel, M.J., et al., Generic values for soil-to-plant transfer factors of radiocesium. Journal of Environmental Radioactivity, 2002. 58(2–3): p. 113-128.
Velasco, H., J.J. Ayub, and U. Sansone, Influence of crop types and soil properties on radionuclide soil-to-plant transfer factors in tropical and subtropical environments. Journal of environmental radioactivity, 2009. 100(9): p. 733-738.
Sheppard, S.C., et al., Revision and meta-analysis of selected biosphere parameter values for chlorine, iodine, neptunium, radium, radon and uranium. Journal of Environmental Radioactivity, 2006. 89(2): p. 115-137.
Beresford, N.A., et al., Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 2016. 157: p. 77-89.
Michel, R., et al., Retrospective dosimetry of Iodine-131 exposures using Iodine-129 and Caesium-137 inventories in soils – A critical evaluation of the consequences of the Chernobyl accident in parts of Northern Ukraine. Journal of Environmental Radioactivity, 2015. 150: p. 20-35.
Radiation, U.N.S.C.o.t.E.o.A., Sources and effects of ionizing radiation. UNSCEAR 2013 Report to the General Assembly with scientific annexes. Volume I, Annex A: Levels and effects of radiation exposure due to the nuclear accident after the 2011 Great east-Japan earthquake and tsunami. 2014. 2016.
Daraoui, A., et al., Iodine-129, Iodine-127 and Caesium-137 in the environment: soils from Germany and Chile. Journal of Environmental Radioactivity, 2012. 112: p. 8-22.
Jabbar, T., G. Wallner, and P. Steier, A review on 129I analysis in air. Journal of Environmental Radioactivity, 2013. 126: p. 45-54.
Aldahan, A., V. Alfimov, and G. Possnert, I-129 anthropogenic budget: Major sources and sinks. Applied Geochemistry, 2007. 22(3): p. 606-618.
Zhang, L., et al., Level and source of 129I of environmental samples in Xi'an region, China. Science of The Total Environment, 2011. 409(19): p. 3780-3788.
Hu, Q.-H., J.-Q. Weng, and J.-S. Wang, Sources of anthropogenic radionuclides in the environment: a review. Journal of Environmental Radioactivity, 2010. 101(6): p. 426-437.
Kodama, S., et al., Speciation of iodine in solid environmental samples by iodine K-edge XANES: Application to soils and ferromanganese oxides. Science of the Total Environment, 2006. 363(1-3): p. 275-284.
Rao, U.S. and U. Fehn, Sources and reservoirs of anthropogenic iodine-129 in western New York. Geochimica Et Cosmochimica Acta, 1999. 63(13-14): p. 1927-1938.
Shinonaga, T., et al., Transfer of iodine from soil to cereal grains in agricultural areas of Austria. Science of the Total Environment, 2001. 267(1-3): p. 33-40.
Ban-Nai, T. and Y. Muramatsu, Transfer factors of radioiodine from volcanic-ash soil (Andosol) to crops. J Radiat Res, 2003. 44(1): p. 23-30.
Sousa, M.R.d. and A.L.P. Ribeiro, Revisão sistemática e meta-análise de estudos de diagnóstico e prognóstico: um tutorial. Arquivos Brasileiros de Cardiologia, 2009. 92: p. 241-251.
Astakhova, L.N., et al., Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Res, 1998. 150(3): p. 349-56.
Hou, X., et al., A review on speciation of iodine-129 in the environmental and biological samples. Analytica Chimica Acta, 2009. 632(2): p. 181-196.
Zhu, Y.G., et al., Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: effects of iodine species and solution concentrations. Environment International, 2003. 29(1): p. 33-37.
Gómez-Guzmán, J.M., et al., Pre- and post-Chernobyl accident levels of 129I and 137Cs in the Southern Baltic Sea by brown seaweed Fucus vesiculosus. Journal of Environmental Radioactivity, 2013. 115: p. 134-142.
Humphrey, O.S., et al., Iodine soil dynamics and methods of measurement: a review. Environmental Science-Processes & Impacts, 2018. 20(2): p. 288-310.
Faridullah, et al., Socio-demographic characters, distribution and transformation of iodine in soil, plant and wheat grains at District Diamer, Gilgit-Baltistan, Pakistan. Environmental Geochemistry and Health, 2018. 40(2): p. 777-790.
Yu, H., et al., The distribution characteristics of halogen elements in soil under the impacts of geographical backgrounds and human disturbances. Geoderma, 2017. 305: p. 236-249.
Soderlund, M., et al., Sorption and speciation of iodine in boreal forest soil. Journal of Radioanalytical and Nuclear Chemistry, 2017. 311(1): p. 549-564.
Smolen, S., I. Ledwozyw-Smolen, and W. Sady, Iodine biofortification of spinach by soil fertigation with additional application of humic and fulvic acids. New Zealand Journal of Crop and Horticultural Science, 2017. 45(4): p. 233-250.
Santschi, P.H., et al., Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium. Journal of Environmental Radioactivity, 2017. 171: p. 226-233.
Santschi, P.H., et al., Iodine and plutonium association with natural organic matter: A review of recent advances. Applied Geochemistry, 2017. 85: p. 121-127.
Gonzali, S., C. Kiferle, and P. Perata, Iodine biofortification of crops: agronomic biofortification, metabolic engineering and iodine bioavailability. Current Opinion in Biotechnology, 2017. 44: p. 16-26.
Gadzhimusieva, N.T. and A.A. Saidieva, The Dynamics of Mobile Iodine Forms in Components of Arid Ecosystems of the Western Caspians. Arid Ecosystems, 2017. 7(2): p. 125-129.
Almahayni, T., et al., Effects of incubation time and filtration method on Kd of indigenous selenium and iodine in temperate soils. Journal of Environmental Radioactivity, 2017. 177: p. 84-90.
Xu, C., et al., Role of natural organic matter on iodine and 239,240Pu distribution and mobility in environmental samples from the northwestern Fukushima Prefecture, Japan. Journal of Environmental Radioactivity, 2016. 153: p. 156-166.
Xu, S., et al., Carbon, cesium and iodine isotopes in Japanese cedar leaves from Iwaki, Fukushima. Journal of Radioanalytical and Nuclear Chemistry, 2016. 310(2): p. 927-934.
Wiszniewska, A., et al., Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere, 2016. 26(1): p. 1-12.
Smolen, S., et al., Biofortification of Carrot (Daucus carota L.) with Iodine and Selenium in a Field Experiment. Frontiers in Plant Science, 2016. 7.
Smolen, S., et al., The quality of carrot (Daucus carota L.) cultivated in the field depending on iodine and selenium fertilization. Folia Horticulturae, 2016. 28(2): p. 151-164.
Smolen, S., et al., Iodine and selenium biofortification of lettuce (Lactuca sativa L.) by soil fertilization with various compounds of these elements. Acta Scientiarum Polonorum-Hortorum Cultus, 2016. 15(5): p. 69-91.
Smolen, S., I. Ledwozyw-Smolen, and W. Sady, The role of exogenous humic and fulvic acids in iodine biofortification in spinach (Spinacia oleracea L.). Plant and Soil, 2016. 402(1-2): p. 129-143.
Duborska, E., et al., Aging and Substrate Type Effects on Iodide and Iodate Accumulation by Barley (Hordeum vulgare L.). Water Air and Soil Pollution, 2016. 227(11).
Duborska, E., J. Kubova, and P. Matus, Factors Affecting Iodine Mobility in Soils. Chemicke Listy, 2016. 110(9): p. 625-629.
Takeda, A., et al., Effect of aging on availability of iodine in grassland soil collected in Rokkasho, Japan. Journal of Radioanalytical and Nuclear Chemistry, 2015. 303(2): p. 1191-1195.
Miller, A., et al., Iodide uptake by negatively charged clay interlayers? Journal of Environmental Radioactivity, 2015. 147: p. 108-114.
Takeda, A., et al., Changes in the chemical form of exogenous iodine in forest soils and their extracts. Radiat Prot Dosimetry, 2015. 167(1-3): p. 181-6.
Yamasaki, S., et al., Bromine and iodine in Japanese soils determined with polarizing energy dispersive X-ray fluorescence spectrometry. Soil Science and Plant Nutrition, 2015. 61(5): p. 751-760.
Siasou, E. and N. Willey, Inter-Taxa Differences in Iodine Uptake by Plants: Implications for Food Quality and Contamination. Agronomy-Basel, 2015. 5(4): p. 537-554.
Lusa, M., et al., Sorption of radioiodide in an acidic, nutrient-poor boreal bog: insights into the microbial impact. Journal of Environmental Radioactivity, 2015. 143: p. 110-122.
Linhares, D.P.S., et al., Iodine environmental availability and human intake in oceanic islands: Azores as a case-study. Science of the Total Environment, 2015. 538: p. 531-538.
Fuge, R. and C.C. Johnson, Iodine and human health, the role of environmental geochemistry and diet, a review. Applied Geochemistry, 2015. 63: p. 282-302.
Cox, E.M. and Y. Arai, Environmental Chemistry and Toxicology of Iodine, in Advances in Agronomy, Vol 128, D.L. Sparks, Editor. 2014. p. 47-96.
Chang, H.-s., et al., Model of radioiodine speciation and partitioning in organic-rich and organic-poor soils from the Savannah River Site. Journal of Environmental Chemical Engineering, 2014. 2(3): p. 1321-1330.
Hurtevent, P., et al., Translocation of 125I, 75Se and 36Cl to Wheat edible parts following wet foliar contamination under field conditions. Journal of Environmental Radioactivity, 2013. 121: p. 43-54.
Weng, H.X., et al., Biogeochemical transport of iodine and its quantitative model. Science China-Earth Sciences, 2013. 56(9): p. 1599-1606.
Luo, M., et al., Speciation and migration of 129I in soil profiles. Journal of Environmental Radioactivity, 2013. 118: p. 30-39.
Choung, S., et al., Uptake Mechanism for Iodine Species to Black Carbon. Environmental Science & Technology, 2013. 47(18): p. 10349-10355.
Bowley, H.E., et al., Historical trends in iodine and selenium in soil and herbage at the Park Grass Experiment, Rothamsted Research, UK. Soil Use and Management, 2017. 33(2): p. 252-262.
Oliver, M.A. and P. Gregory, Soil, food security and human health: a review. European Journal of Soil Science, 2015. 66(2): p. 257-276.
Korobova, E.M., et al., Iodine and Selenium Speciation in Natural Waters and Their Concentrating at Landscape-Geochemical Barriers. Geochemistry International, 2014. 52(6): p. 500-514.
Ashworth, D.J., Transfers of Iodine in the Soil–Plant–Air System: Solid–Liquid Partitioning, Migration, Plant Uptake and Volatilization A2 - Preedy, Edited byVictor R, in Comprehensive Handbook of Iodine, G.N. Burrow and R. Watson, Editors. 2009, Academic Press: San Diego. p. 107-118.
Schwehr, K.A., et al., Organo-Iodine Formation in Soils and Aquifer Sediments at Ambient Concentrations. Environmental Science & Technology, 2009. 43(19): p. 7258-7264.
Yamada, H., et al., Speciation of iodine in soils. Soil Science and Plant Nutrition, 1999. 45(3): p. 563-568.
MEURER, E.J., Fundamentos de química do solo. Porto Alegre: Evangraf, 2006.
Fuge, R. and C.C. Johnson, The geochemistry of iodine — a review. Environmental Geochemistry and Health, 1986. 8(2): p. 31-54.
Johanson, K.J., Iodine in soil. 2000. p. 45.
Whitehead, D.C., The distribution and transformations of iodine in the environment. Environment International, 1984. 10(4): p. 321-339.
Shetaya, W.H., et al., Iodine dynamics in soils. Geochimica Et Cosmochimica Acta, 2012. 77: p. 457-473.
Yuita, K. and N. Kihou, Behavior of iodine in a forest plot, an upland field, and a paddy field in the upland area of Tsukuba, Japan: Vertical distribution of iodine in soil horizons and layers to a depth of 50 m. Soil Science and Plant Nutrition, 2005. 51(4): p. 455-467.
Rowell, D.L., Soil science : methods and applications / David L. Rowell. 1994, Harlow, Essex : New York: Longman Scientific & Technical ; Wiley.
Korobova, E., Soil and landscape geochemical factors which contribute to iodine spatial distribution in the main environmental components and food chain in the central Russian plain. Journal of Geochemical Exploration, 2010. 107(2): p. 180-192.
Muramatsu, Y. and S. Yoshida, Effects of microorganisms on the fate of iodine in the soil environment. Geomicrobiology Journal, 1999. 16(1): p. 85-93.
Muramatsu, Y., et al., Studies with natural and anthropogenic iodine isotopes: iodine distribution and cycling in the global environment. Journal of Environmental Radioactivity, 2004. 74(1-3): p. 221-232.
Kashparov, V., et al., Soil-to-plant halogens transfer studies 1. Root uptake of radioiodine by plants. Journal of Environmental Radioactivity, 2005. 79(2): p. 187-204.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 Brazilian Journal of Radiation Sciences
This work is licensed under a Creative Commons Attribution 4.0 International License.
Licensing: The BJRS articles are licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/