Avaliação em microcosmo da influência de nanopartículas (hidroxiapatita e PLGA) sobre o comportamento químico de Zn, Cu e Mn em sistema costeiro degradado

Authors

  • Michele Maria da Silva Instituto de Radioproteção e Dosimetria
  • Maria Angélica Vergara Wasserman Instituto de Engenharia Nuclear
  • Daniel Vidal Perez Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
  • Julio Cesar de Faria Alvim Wasserman Universidade Federal Fluminense
  • Ralph Santos-Oliveira Instituto de Engenharia Nuclear
  • Tatiane Rocha Pereira Instituto de Engenharia Nuclear
  • Manuella Borges Barreto Instituto de Engenharia Nuclear
  • Lucas dos Santos Peixoto Moraes Instituto de Engenharia Nuclear
  • Glauco Corrêa da Silva Instituto de Engenharia Nuclear

DOI:

https://doi.org/10.15392/bjrs.v7i3.857

Keywords:

nanoparticles, polluted aquatic environment, microcosm essay

Abstract

A liberação de diversos tipos de nanopartículas no ambiente aquático pode resultar na exposição direta ou indireta do homem e de organismos aquáticos, ou impactos no comportamento de metais. A ausência de legislação ambiental específica para o descarte de rejeitos oriundos de atividades que utilizam nanopartículas, como centros de pesquisa, serviços de medicina nuclear e a indústria, tem contribuído para a liberação descontrolada desses materiais no meio ambiente tornando-os relevantes dentro do contexto ecotoxicológico. Neste estudo, nanopartículas (nanohidroxiapatita e ácido D, L-láctico-co-glicólico - PLGA) com uso promissor pela medicina nuclear foram avaliadas por ensaios em microcosmos, reproduzindo-se as condições do Canal do Cunha (RJ), sistema aquático costeiro, impactado por rejeitos industriais, domésticos e hospitalar, com elevados teores em metais e materiais orgânicos, já reportados na literatura. Os resultados deste estudo não identificaram impactos dos diferentes nanomateriais no comportamento de metais dissolvidos (Cu, Mn e Zn), na concentração testada, provavelmente devido ao desenvolvimento de uma emulsão bacteriana nos microcosmos, que promoviam flutuações atípicas na concentração dos metais dissolvidos, principalmente Cu e Zn. Estudos similares com nanomateriais em concentrações superiores às testadas são indicados para corpos d´água em nível avançado de degradação qualitativa.

Downloads

Download data is not yet available.

References

BARROCAS, P.; WASSERMAN, J. O mercúrio na Baía de Guanabara: Uma revisão histórica. Geochimica Brasiliensis, v. 9, n. 2, p. 115-127, 2011. ISSN 2358-2812.

BATLEY, G. E.; KIRBY, J. K.; MCLAUGHLIN, M. J. Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res, v. 46, n. 3, p. 854-62, Mar 19 2013. ISSN 0001-4842.

BORGES, R. C.; CALDAS, V. G. A review of use of GIS for the evaluation of heavy metal and water quality parameters in the canal do cunha watershed and west of the Guanabara Bay, Rio de Janeiro (Brazil). Journal of Sedimentary Environments, v. 1, n. 2, p. 275-285, 2016. ISSN 2447-9462.

BORGES, R. C. et al. Use of GIS for the evaluation of heavy metal contamination in the Cunha Canal watershed and west of the Guanabara Bay, Rio de Janeiro, RJ. Marine Pollution Bulletin, v. 89, n. 1, p. 75-84, 2014/12/15/ 2014. ISSN 0025-326X. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0025326X14007176 >.

CERRILLO, C. et al. Key challenges for nanotechnology: Standardization of ecotoxicity testing. Journal of Environmental Science and Health, Part C, v. 35, n. 2, p. 104-126, 2017/04/03 2017. ISSN 1059-0501. Disponível em: < https://doi.org/10.1080/10590501.2017.1298361 >.

COLVIN, V. Sustainability for Nanotechnology. The Scientist, v. 18, p. 26ff, // 2004. ISSN 0890-3670. Disponível em: < http://www.the-scientist.com/2004/08/30/26/1/ >.

COLVIN, V. L. The potential environmental impact of engineered nanomaterials. Nat Biotech, v. 21, n. 10, p. 1166-1170, 10//print 2003. ISSN 1087-0156. Disponível em: < http://dx.doi.org/10.1038/nbt875 >.

COSTA, A. C. F. M. L., M. G.; LIMA, L. H. M. A.; CORDEIRO, V. V.; VIANA, K. M. S.; SOUZA, C.V.; LIRA, H. L. Hidroxiapatita: Obtenção, caracterização e aplicações. Revista Eletrônica de Materiais e Processos. 4: 29-38 p. 2009.

DA SILVA, E. A. B. et al. Water Remediation Using Calcium Phosphate Derived From Marine Residues. Water, Air, & Soil Pollution, v. 223, n. 3, p. 989-1003, 2012// 2012. ISSN 1573-2932. Disponível em: < http://dx.doi.org/10.1007/s11270-011-0918-2 >.

DA SILVA, F. et al. Nano-Hydroxyapatite Doped with Ho-166 as Drug Delivery System for Bone Cancer Therapy. Anti-cancer agents in medicinal chemistry, 2015. ISSN 1875-5992.

DAUGHTON, C. G. Non-regulated water contaminants: emerging research. Environmental Impact Assessment Review, v. 24, n. 7–8, p. 711-732, 10// 2004. ISSN 0195-9255. Disponível em: <http://www.sciencedirect.com/science/article/pii/S0195925504000721>. Acesso em: 2004/11//

DE CARVALHO AGUIAR, V. M. et al. Ecological risks of trace metals in Guanabara Bay, Rio de Janeiro, Brazil: An index analysis approach. Ecotoxicology and environmental safety, v. 133, p. 306-315, 2016. ISSN 0147-6513.

DOWLING, A. P. Development of nanotechnologies. Materials Today, v. 7, n. 12, Supplement, p. 30-35, 12// 2004. ISSN 1369-7021. Disponível em: < http://www.sciencedirect.com/science/article/pii/S1369702104006285 >.

HANDY, R. D.; OWEN, R.; VALSAMI-JONES, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology, v. 17, n. 5, p. 315-25, Jul 2008. ISSN 0963-9292 (Print) 0963-9292.

HANDY, R. D. et al. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, v. 17, n. 4, p. 287-314, May 2008. ISSN 0963-9292 (Print)0963-9292 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/18351458 >.

HOWARD, C. Small particles–big problems. Int Lab News, v. 34, n. 2, p. 28-29, 2004.

INEA. RESOLUÇÃO CERHI-RJ Nº 107. Rio de Janeiro 2013.

INEA. Boletim Consolidado de Qualidade das águas da Região Hidrográfica V- Baía de Guanabara. Rio de Janeiro 2017.

JARDIM, W. F. Measurement and interpretation of redox potential values (EH) in environmental matrices. Quimica Nova, v. 37, n. 7, p. 1233-1235, 2014. ISSN 0100-4042.

KAUFMANN, C. L. G. Estudo Hidrodinâmico e de Qualidade de Água após Revitalização da Circulação do Canal do Fundão, Baía de Guanabara, RJ. 2009. 150p. COPPE, Universidade Federal do Rio de Janeiro (UFRJ).

LIANG, X. et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite. Geoderma, v. 235-236, p. 9-18, 2014. ISSN 00167061.

MONDAL, S.; DOROZHKIN, S. V.; PAL, U. Recent progress on fabrication and drug delivery applications of nanostructured hydroxyapatite. Wiley Interdiscip Rev Nanomed Nanobiotechnol, Nov 23 2017. ISSN 1939-0041.

MOORE, M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environment international, v. 32, n. 8, p. 967-976, 2006. ISSN 0160-4120.

OLGA, B. K. et al. Nanoparticle Metal Oxides for Chlorocarbon and Organophosphonate Remediation. In: (Ed.). Environmental Applications of Nanomaterials: PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2007. p.3-24. ISBN 978-1-86094-662-2.

ROYAL SOCIETY & ROYAL ACADEMY OF ENGINEERING. Nanoscience and Nanotechnologies: Opportunities and Uncertainties. Royal Society. 2004. (9780854036042)

SHENOY, D. B.; AMIJI, M. M. Poly(ethylene oxide)-modified poly(epsilon-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm, v. 293, n. 1-2, p. 261-70, Apr 11 2005. ISSN 0378-5173 (Print) 0378-5173.

SILVA, F. M. R. Desenvolvimento e avaliação de nano-hidroxiapatita dopada com Holmio-166 para terapia do câncer ósseo. 2015. (Mestrado em Ciência e Tecnologias Nucleares). Instituto de Engenharia Nuclear, Rio de Janeiro - Brasil.

SILVA, M. M. et al. The effect of nanohydroxyapatite on the behavior of metals in a microcosm simulating a lentic environment. Environmental Nanotechnology, Monitoring & Management, v. 8, n. Supplement C, p. 219-227, 2017/12/01/ 2017. ISSN 2215-1532. Disponível em: < http://www.sciencedirect.com/science/article/pii/S2215153217300673 >.

WASSERMAN, J. C. Relationships between nutrients and macroalgal biomass in a brazilian coastal lagoon: the impact of a lock construction AU - Cunha, Leticia Cotrim da. Chemistry and Ecology, v. 19, n. 4, p. 283-298, 2003/08/01 2003. ISSN 0275-7540. Disponível em: < https://doi.org/10.1080/0275754031000095732 >.

YANG, Z. et al. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biochar-supported nHAP. Journal of Environmental Management, v. 182, p. 247-251, 11/1/ 2016. ISSN 0301-4797. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0301479716305163 >.

ZUBAIR, M. et al. Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Applied Clay Science, v. 143, p. 279-292, 7// 2017. ISSN 0169-1317. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0169131717301655 >.

Published

2019-07-04

Issue

Section

Articles

How to Cite

Avaliação em microcosmo da influência de nanopartículas (hidroxiapatita e PLGA) sobre o comportamento químico de Zn, Cu e Mn em sistema costeiro degradado. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 7, n. 3, 2019. DOI: 10.15392/bjrs.v7i3.857. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/857. Acesso em: 25 dec. 2024.

Similar Articles

1-10 of 148

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)