Exploration of the interaction between antimicrobial peptides and gamma radiation for biosensor development.

Authors

  • Fabiane Modenese Garbim Instituto Militar de Engenharia (IME) - Graduate Program in Nuclear Engineering (PPGEN), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil. https://orcid.org/0009-0008-2006-4526 (unauthenticated)
  • Marcela Rabelo De Lima Instituto Militar de Engenharia (IME) - Graduate Program in Defense Engineering (PPGED), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil.
  • Giulianna Santos Pereira Instituto Militar de Engenharia (IME) - Graduate Program in Nuclear Engineering (PPGEN), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil.
  • João Nilton Conceição Bandeira Instituto Militar de Engenharia (IME) - Graduate Program in Nuclear Engineering (PPGEN), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil.
  • Álvaro José Mendes-Boareto Instituto Militar de Engenharia (IME) - Graduate Program in Nuclear Engineering (PPGEN), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil.
  • Fernando Manuel Araújo-Moreira Instituto Militar de Engenharia (IME) - Graduate Program in Nuclear Engineering (PPGEN), Praça General Tibúrcio, 80 – Urca, Rio de Janeiro-RJ, 22290-270, Brasil.
  • N.F.G. Serrano Universidade Federal de São Carlos (UFSCar) - Graduate Program in Biotechnology (PPG-Biotec), Rod. Washington Luís, s/n - Monjolinho, São Carlos - SP, 13565-905, Brasil.

DOI:

https://doi.org/10.15392/2319-0612.2025.2833

Keywords:

gamma radiation, radiobiology, peptide, biosensor

Abstract

The continuous advancement of nuclear science, associated with biotechnology, has provided innovative interdisciplinary approaches to overcome challenges related to the detection of ionizing radiation. This study investigates the use of antimicrobial peptides (AMPs), present in the total extract of the bacterium Paenibacillus polymyxa RNC-D, as a potential sensitive element in the development of gamma radiation biosensors. The total extract (TE) containing the AMPs was irradiated in a Gamacell 220 irradiator with a Co-60 source at the Radiation Technology Center (CTR) of IPEN, subjected to doses of 0.5, 1.0, 4.0, and 10.0 Gy under controlled conditions. The evaluation of antimicrobial activity included tests against clinically relevant microorganisms, such as Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes and Candida albicans. The results revealed that the AMPs, particularly the peptide from Paenibacillus polymyxa RNC-D, denominated PpRNC-D, present in the fermentative extract, maintained antimicrobial activity after exposure to doses of 0.5 Gy and 1.0 Gy, especially against Gram-positive bacteria. However, a considerable loss of activity was observed at doses of 4.0 Gy and 10.0 Gy. These findings indicate that, although AMPs demonstrate changes in activity as a function of dose and could be explored for biosensing, their functional stability is limited at higher radiation doses. This work highlights the specific potential of these AMPs as a basis for portable and economical biosensors, applicable in environmental monitoring and radiological safety within certain dose ranges.

Downloads

Download data is not yet available.

References

[1] Alfaya, A. A. S., Kubota, L. T. A utilização de materiais obtidos pelo processo de Sol-Gel na construção de biossensores. Química Nova, v. 25, n. 5, pp. 835-841, 2002.

[2] Chilton, A. B., Shultis, J. K. and Faw, R. E. (1984). Principles of Radiation Shielding, Prentice-Hall.

[3] Choi, S. K. et al. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun, v. 365, pp. 89-95, 2007.

[4] CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, 2024.

[5] Conklin, James & Walker, Richard. (2009). Military Radiobiology. International Journal of Radiation Biology, INT J RADIAT BIOL. 52. 407

[6] De Cesare, G. B. et al. Antimicrobial Peptides: a New Frontier in Antifungal Therapy. mBio, v. 11, n. 6, pp. 02123-20, 2020.

[7] De Lima, M. R. et al. Estudo do limiar da eficiência funcional de peptídeo antimicrobiano (AMP) sujeito a irradiação gama. International Joint Conference Radio 2022, Poços de Caldas, pp. 363-364, 2022.

[8] D'Orazio, P. Biosensors in clinical chemistry. Clínica Chimica Acta, International Journal of Clinical Chemistry, pp. 1749-176, 2011.

[9] Gu, L. et al. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. J Environ Sci, v. 22, n. 9, pp. 1407-1412, 2010.

[10] Huang, X. Y. et al. Exopolysaccharides of Paenibacillus polymyxa: a review. International Journal of Biological Macromolecules, v. 261, pp. 129663, 2024.

[11] Lal, S., Tabacchioni, S. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian Journal Microbiology, n. 49, pp. 2-10, 2009.

[12] Nardi, D. T. Estudo dos efeitos da radiação gama na estrutura de alguns peptídeos de relevância biológica. Universidade Federal de São Paulo, São Paulo, 2009.

[13] NCCLS. Método de Referência para Testes de Diluição em Caldo para a Determinação da Sensibilidade a Terapia Antifúngica das Leveduras; Norma Aprovada—Segunda Edição. Norma M27-A2 do NCCLS (ISBN 1-56238-469-4). NCCLS, Wayne, Pennsylvania, Estados Unidos, 2002.

[14] Okarvi, S. M., Maecke, H. R. Peptides for Nuclear Medicine Therapy: chemical properties and production. Therapeutic Nuclear Medicine, [S.L.], pp. 105-123, 2013.

[15] Serrano, N. F. G. Produção de compostos antimicrobianos por Paenibacillus polymyxa RNC-D: otimização das condições de cultivo, purificação e caracterização dos bioprodutos. Universidade Federal de São Carlos, 2014.

[16] Hing, J. N.; Jong, B. C.; Liew, P. W. Y.; Ellyna, R. E.; Shamsudin, S. Gamma Radiation Dose-Response of Gram-Positive and Gram-Negative Bacteria. Malaysian Applied Biology, v. 51, n. 5, p. 107–112, 2022.

[17] Tauhata, L., Salati, I., Di Prinzio, R., Di Prinzio, M. Radioproteção e Dosimetria: Fundamentos. 10ª ed. Rio de Janeiro: Instituto de Radioproteção e Dosimetria, CNEN, 2014.

[18] Thomazini, B. S. Desenvolvimento de biossensor óptico para detecção de microrganismos patogênicos. Universidade Federal de São Carlos, São Carlos, 2016.

[19] Wang, J. Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, v. 21, n. 10, pp. 1887-1892, 2006.

Downloads

Published

2025-06-20

How to Cite

Exploration of the interaction between antimicrobial peptides and gamma radiation for biosensor development. Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 13, n. 2A (Suppl.), p. e2833, 2025. DOI: 10.15392/2319-0612.2025.2833. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2833. Acesso em: 16 jul. 2025.