Intercomparison of quality control software responses in measuring the modulation transfer function in mammography

Authors

DOI:

https://doi.org/10.15392/2319-0612.2025.2842

Keywords:

Modulation Transfer Function, Mammography, Quality Control, ATIA

Abstract

The National Cancer Institute (INCA) estimated approximately 74,000 new cases of breast cancer in Brazil in 2023, making it the second most common cancer among women. Mammography is the most effective method for early diagnosis, capable of detecting lesions as small as 2 mm before symptoms or dissemination. To ensure its effectiveness, mammography systems must comply with Brazilian standards, such as RDC nº 611 and IN nº 92 from Anvisa, through quality control testing. One of the primary quality tests is the Modulation Transfer Function (MTF) analysis, which evaluates system performance in the spatial frequency domain to ensure diagnostic accuracy. This study assessed the performance of three software tools — ATIA, COQ, and MAMMOQC — in analyzing the MTF of digital mammography systems, focusing on Retrofit DR and CR technologies. Images were acquired using a Siemens Mammomat 3000 NOVA analog mammograph equipped with a Retrofit DR detector and a CR plate. Digital images were analyzed using ATIA, which automatically positions Regions of Interest (ROIs), and the COQ and MAMMOQC plugins in ImageJ, where ROIs were manually selected. MTF values at 10%, 20%, and 50% were compared between the software using paired t-tests with a 5% significance level. Results showed that ATIA and MAMMOQC exhibited higher agreement for 50% MTF, while COQ often produced higher resolution values, particularly at 10% and 20% MTF, highlighting methodological differences among the tools. Statistical analysis revealed significant discrepancies between software results, particularly for the CR system. For the Retrofit DR system, significant variability was observed in comparisons between COQ and MAMMOQC (p = 0.030). For the CR system, all software comparisons showed significant differences, suggesting greater sensitivity to noise and methodological variations at lower MTF percentages. These findings underscore the importance of understanding the strengths and limitations of each software for mammography quality control and emphasize the need for further validation of ATIA as a reliable tool in this field.

Downloads

Download data is not yet available.

References

[1] INCA, Instituto Nacional de Câncer José Alencar Gomes da Silva. Estimativa 2023: incidência de câncer no Brasil. Ministério da Saúde. Rio de Janeiro, p. 162, 2022.

[2] BIASOLI JR, A. Técnicas radiográficas: princípios físicos, anatomia básica, posicionamento, radiologia digital, tomografia computadorizada. Rubio, Rio de Janeiro, 2. Ed, 2016.

[3] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. Instrução Normativa IN Nº 92, de 27 de maio de 2021. Brasília, DF: Diário Oficial da União, 2021.

[4] BRAZIL. Ministério da Saúde. Diretoria Colegiada da Agência Nacional de Vigilância Sanitária. RDC Nº 611, de 9 de março de 2022. Brasília, DF: Diário Oficial da União, 2022.

[5] SEFM-SEPR-SERAM, Protocolo Español de Control de Calidad en Radiodiagnóstico. Editora Senda S.A., 2011.

[6] BUSHBERG, J.T. et al. The essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia, 2 ed., 2001.

[7] IAEA - International Atomic Energy Agency. Implementation of a Remote and Automated Quality Control Programme for Radiography and Mammography Equipment. Vienna: Human Health Series nº39. Disponível em: https://www.iaea.org/publications/13539/implementation-of-a-remote-andautomated-quality-control-programme-for-radiography-and-mammography-equipment. Acesso em: 30 dez. 2024.

[8] FOGAGNOLI, M. P. et al. Implementação de um Programa de Controle de Qualidade Remoto para Avaliação de Imagens em Radiografia Convencional e Mamografia. Revista Brasileira de Física Médica, São Paulo, v. 16, p. 696-696, 2022.

[9] MORA, P. et al. The IAEA remote and automated quality control methodology for radiography and mammography. Journal of Applied Clinical Medical Physics, Louisville, vol 22, p. 1–17, 2021.

[10] FITTON, I. et al. Two-Dimensional Mammography Imaging Techniques for Screening Women with Silicone Breast Implants: A Pilot Phantom Study. Bioengineering, v. 11, n. 9, p. 884–884, 31 ago. 2024.

[11] DRTECH Co, Ltd. “RSM1824C / RSM2430C User Manual”. Disponível em: https://www.drtech.co.kr/kr/. Acesso em: 30 dez. 2024.

[12] KODAK. DIAGNOSTICS for the Kodak DirectView CR 825/850 SYSTEMS Service Codes: 5634, 4825. Manual, 2005.

[13] SIEMENS. Mammography Applications for MAMMOMAT 1000/3000 Nova. Manualslib, 2004. Disponivel em: https://www.manualslib.com/download/1605263/Siemens-Mammomat-1000Nova.html. Acesso em: 30 dez. 2024.

[14] EFOMP - European Federation of Organizations for Medical Physics. EFOMP Mammo Protocol. Quality controls in Digital Mammography. 2017.

[15] ALMEIDA, L. F. M. et al. Intercomparison of modulation transfer function in mammography using quality control softwares. In: Semana nacional de engenharia nuclear e da energia e ciências das radiações. Anais. Belo Horizonte (MG) UFMG, 2024. Disponível em: https//www.even3.com.br/anais/vii-sencir-semana-nacional-de-engenharia-nuclear-e-da-energia-e-ciencias-das-radiacoes-449507/903883-INTERCOMPARISON-OF-MODULATION-TRANSFER-FUNCTION-IN-MAMMOGRAPHY-USING-QUALITY-CONTROL-SOFTWARES. Acesso em: 30 dez. 2024.

[16] ALMEIDA, L. F. M. et al. Comparative evaluation of materials for measuring the modulation transfer function in an amorphous silicon detector for digital mammography. ISSSD 2024: 24 international symposium on solid state dosimetry, Mexico: Sociedad Mexicana de Irradiacion y Dosimetria. INIS-IAEA, 2024.

[17] MINITAB. Minitab Statistical Software, versão 18 [software]. State College, PA: Minitab, Inc., 2017.

Downloads

Published

2025-06-30

How to Cite

Intercomparison of quality control software responses in measuring the modulation transfer function in mammography . Brazilian Journal of Radiation Sciences, Rio de Janeiro, Brazil, v. 13, n. 2A (Suppl.), p. e2842, 2025. DOI: 10.15392/2319-0612.2025.2842. Disponível em: https://bjrs.org.br/revista/index.php/REVISTA/article/view/2842. Acesso em: 16 jul. 2025.